Dans quelles circonstances et pourquoi peut on trouver une Em négative ?? ca fait 20 jours que je cherche une explication donc merci d'avance a ceux qui pourront m'en délivrer
-----
Dans quelles circonstances et pourquoi peut on trouver une Em négative ?? ca fait 20 jours que je cherche une explication donc merci d'avance a ceux qui pourront m'en délivrer
Si la définition n'a pas changé:
Emécanique = Ecinétique + Epotentielle
Comme les énergies potentielles sont définies à une constante près, rien ne les empèche d'être négatives.
Que sais-je?
j'expose mon pb ce sera plus simple : je calcule dans le référentiel goecentrique ec de la lune ep de gravitation et em ( il y a conservation d'energie mécanique) et j'obtiens em = -7.61 .10 31 J ( c'est le bon résultat) et donc je me demande pourquoi cette energie est négative ...
Je me répète: parce que la valeur de ep est arbitraire, dans les problèmes de gravitation on choisit en général ep=0 à l'infini. Seule la variation de l'énergie potentielle à une signification, si je remplace ep par e'p=ep+K, je trouve bien:
e'p2-e'p1=ep2+K-(ep1+K) = ep2-ep1
La valeur de K étant totalement arbitraire, on peut toujours la fixer à une valeur rendant l'énergie mécanique négative. Les conventions habituelles conduisent à avoir des énergies mécaniques négatives pour les systèmes liés. Dans le cas du système Terre-Lune, ceci signifie que la trajectoire de la Lune ne peut pas avoir de point infiniment éloigné de la Terre. Mais ceci reste une convention, il n'existe pas de mesure absolue de l'énergie mécanique.
Que sais-je?
oh merci beaucoup et dire qu'en 15jours j'ai pas réussi a trouver ce que tu as dit en 1h30 a peine ! je suis bien contente car j'ai compris
Merci encore
il y a une raison de plus a ceci.Independamment des references choisies,de la valeur de l'energie potentielle prise en un point donné et donc de la valeur fixée a K,c'est le travail qui peut etre arbitrairement grand et positif entre deux points.Pour le potentiel d'une masse ponctuelle avoir -Gm/r +K amene en consequence amene obligatoirement une ep et eventuellement une em negative des que r est assez petit.Je me répète: parce que la valeur de ep est arbitraire, dans les problèmes de gravitation on choisit en général ep=0 à l'infini. Seule la variation de l'énergie potentielle à une signification, si je remplace ep par e'p=ep+K, je trouve bien:
e'p2-e'p1=ep2+K-(ep1+K) = ep2-ep1
La valeur de K étant totalement arbitraire, on peut toujours la fixer à une valeur rendant l'énergie mécanique négative. Les conventions habituelles conduisent à avoir des énergies mécaniques négatives pour les systèmes liés. Dans le cas du système Terre-Lune, ceci signifie que la trajectoire de la Lune ne peut pas avoir de point infiniment éloigné de la Terre. Mais ceci reste une convention, il n'existe pas de mesure absolue de l'énergie mécanique.
Pas dans le cas des forces conservatives dont la gravitation est un des meilleurs exemples puisque dans ce cas le travail ne dépend pas du chemin suivi :c'est le travail qui peut etre arbitrairement grand et positif entre deux points
W = ep1-ep2 = ec2-ec1
Dans le cas inverse, il y a échange de chaleur et non conservation de l'énergie mécanique...
Le signe du travail est une grandeur mesurable et n'a donc rien à voir avec celui de l'énergie mécanique qui est arbitraire (radoterais-je? )
Que sais-je?
oula oula vous commencez a m'embrouiller là d'après ce que vous me dites moi j'en conclu que em est négative parce que ep est négative et si ep est négative c'est car le niveau de référence choisit arbitrairement est en relation avec une formule qui donne ep pour la terre et non pour la lune au départ; donc si je me plante completement faites moi signe svp
On s'est mal comprisEnvoyé par PatzewizPas dans le cas des forces conservatives dont la gravitation est un des meilleurs exemples puisque dans ce cas le travail ne dépend pas du chemin suivi :c'est le travail qui peut etre arbitrairement grand et positif entre deux points
W = ep1-ep2 = ec2-ec1
Dans le cas inverse, il y a échange de chaleur et non conservation de l'énergie mécanique...
J'ai dit que pour une masse ponctuelle aussi grande que puisse etre une quantité donnée de travail il existe deux points a et b autour de lui tel que le travail sur le trajet (ab) soit positif et lui soit superieur,et pas que si on prend deux points la quantité de travail de la gravité obtenue en se deplacant de l'un a l'autre n'est pas fixe.