Bonsoir, pouvez-vous m'aider a résoudre un exercice de mécanique ?
L'énoncé est :
Une voiture M1 est en mouvement rectiligne uniforme avec une vitesse . La voiture M2 est à l'arrêt. Le conducteur voit passer M1 et commence à la poursuivre à l'instant t=0 avec une accélération constante a2. Au même instant, la voiture M1 est à une distance d devant la voiture M2. On considère que les deux voitures ont un mouvement rectiligne et qu'elles sont l'une derrière l'autre.
1) Quelle est le temps que met M2 à atteindre M1 ?
2) Quelle sont les distances d1 et d2 parcourues par chacune des voitures ?
3) Application numérique : =60km/h et d=30m. L'accélération de la voiture M2 est telle que la voiture qui au départ est à l'arrêt, atteint une vitesse de 100km/h en 10 secondes. Donner les valeurs numériques de , d1 et d2.
J'ai pu répondre à une partie de la première question :
1) Pour que la voiture M2 puisse atteindre la position de M1, il faut que la valeur de la vitesse de chacune des voitures (v1 et v2) vérifient l'équation x1(t)=x2(t).
On cherche donc à trouver l'expression de x1(t) et x2(t) par intégration.
Le mouvement est rectiligne uniforme donc accélération nulle pour M1.
Pour la première voiture M1, on a :
(une constante)
( une constante)
Pour la deuxième voiture M2, on a :
(une constante)
( une contante)
Donc l'équation à vérifier est :
=
=
Là, je comptais isoler t, pour pouvoir trouver l'expression de mais je n'y arrive pas, ce qui me bloque pour la suite des questions..
Merci pour votre aide
-----