Allez pour rester dans les articles que j'ai écris (mais trop long pour mettre en entier)...voilà un autre sujet qui a peut-être une actualité plus avancée qu'à l'époque et en tout cas matière à débat:
extrait:
En 1962 des chercheurs ont démontré que les mammifères pouvaient respirer dans des liquides hyperoxygénés. Plus précisément le Dr Kylstra montra en 1960 que des souris pouvaient respirer dans de l’eau salée suroxygénée car surpressurisée.
Puis, en 1966 le docteur Leland Clark résout les problèmes liés au sel et à la surpressurisation des essais précédents grâce aux perfluorocarbones. En 1968 des premiers tests sont effectués sur des rats. Aujourd'hui le laboratoire Hoechst Marion Roussel détient les brevets de ce produit appelé plus généralement le Liquivent, et ce produit fut passé en mars 1996 en phase clinique 3 (dernière phase de test en milieu hospitalier sur des humains avant la mise sur le marché).
Le perfluorooctylbromure (PFOB) a pour formule brute C8F17Br. Il appartient à la famille des perfluoroalcanes.
Caractéristiques :
PFOB CF3(CF2)7Br solubilité de O2 en ml/100ml : 52,7
Une taille relativement petite (longueur de 0,2 microns).
Un caractère fortement polaire : eF > eC.
Une grande solubilité dans les lipides (lipophilie), ce qui permet leur passage dans l'organisme humain par ce biais.
Les multiples expériences menées chez les mammifères ont mis en évidence une toxicité très faible du produit, de plus l'évacuation du produit des voies respiratoires est parfaite.
Le PFOB peut servir à amener le dioxygène dissout dans les poumons et à en évacuer le dioxyde de carbone.
Le principe de la respiration dans un liquide est assez simple. Après avoir réalisé l'équilibre des pressions à 1 atmosphère à l'intérieur des poumons, un PFC peut transporter entre 45 et 55 mL de dioxygène par 100 mL de solvant. Durant la respiration, il y a contact direct entre le solvant et les colloïdes de la surface des parois alvéolaires. Les interfaces air - fluide et la tension de surface résultante sont donc éliminées. Les facteurs responsables d'une mauvaise distribution de la ventilation dans les poumons déficients sont éradiqués. Les avantages de ce procédé sautent aux yeux.
Au sein des poumons les échanges de gaz se font directement entre le sang (liquide) et l’air (gaz), il résulte de cette interface gaz - liquide une tension de surface. L’avantage de l’utilisation du PFOB pour des poumons gravement blessés ou des poumons d’enfants prématurés, est que cette tension de surface est utilisée pour aider la respiration à se faire normalement.
En effet, comme il est dense et qu’il a une inertie plus grande que les gaz, un liquide comme le PFOB semble être plus difficile à inspirer puis à expirer. Mais dans ce cas, l’inertie du liquide implique de concentrer l’effort musculaire d’inspiration juste au début de l’inspiration pour créer un déséquilibre de pression entre l’extérieur des poumons et l’intérieur, le reste de la phase se déroulant grâce à l’inertie du liquide
Aujourd’hui, on peut donner un produit de substitution mais il faut toujours utiliser une ventilation mécanique, qui peut endommager les poumons à cause des surpressions. Les essais avec le Liquivent paraissent à ce sujet beaucoup plus prometteurs.
O2 dissout à Patm (ml/100ml)
PFOB 8
Eau 2
Sang 20
Plasma 2
Le PFOB a également la particularité de piéger les molécules de monoxyde d’azote, comme cela a été constaté chez la souris. Ainsi dans les alvéoles, on note une diminution de 44% de la quantité de ce gaz dans les macrophages LPS, entraînant une atténuation de l’inflammation éventuelle.
Le PFOB est aussi testé actuellement comme liquide de remplacement provisoire pour le sang. Ces derniers présentent un intérêt clinique de première importance car ils permettraient de remédier à tous les problèmes de stocks insuffisants, de compatibilité de groupe, de maladie etc. Les tests tentés au début de la décennie par Leland Clark sur des babouins se sont montrés positifs à ce sujet : un mois et demi après, les primates avaient toujours la même activité.
Autre caractéristiques importantes pour un sang artificiel :
Une hydrophobie assez importante.
Une importante lipophilie.
Un temps de décomposition dans le corps des mammifères relativement long (environ dix jours).
La première qualité de la molécule permet une meilleure élimination du PFOB après l’utilisation. La forte lipophilie du composé associé à sa capacité très importante de stimulation des macrophages, lui permet de se fixer sur les principaux constituants du sang restant. Il augmente ainsi considérablement le pouvoir oxygénatoire des globules rouges et dans le même temps il utilise les macrophages comme véhicule de l’oxygène. La durée d’utilisation de ce produit n’excède en général pas les 48 heures. Ainsi la troisième caractéristique du produit permet de ne laisser dans le corps qu’une infime partie du PFOB sous forme dissociée.
Cependant, le produit a une très grande viscosité. Ceci est le principal problème posé par le PFOB. En effet cette caractéristique est à l’origine d’une très grande fatigue du muscle cardiaque lors de l’utilisation sur des périodes relativement importantes. De plus le produit n’est pas sans effet sur les différentes parties du corps : sa grande lipophilie provoque des lésions.
A l’heure actuelle (d'il y a déjà qq années), le PFOB est disponible dans le commerce comme agent de contraste pour les radios sous le nom de perflubron (Imagent GI) et produit par le groupe Alliance.
-----