D'accord je crois que j'ai compris ,juste comment avoir l'idée de multiplier par k1y et k2y?
et les l dans k dans cette exercice sont tous=1 n'es ce pas ?
-----
D'accord je crois que j'ai compris ,juste comment avoir l'idée de multiplier par k1y et k2y?
et les l dans k dans cette exercice sont tous=1 n'es ce pas ?
Dernière modification par ClemVinch ; 16/11/2021 à 08h05.
Si l'idée vous semble bizarre, vous pouvez aussi
- Déterminer (X) dans la première équation et reportez dans la deuxième.
- Utiliser les méthodes vu en maths pour résoudre les systèmes 2x2 (Cramer)
- ...
Par l vous entendez longueur de la cuve ? SI oui, elle est de 5 mm d'après le texte, mais encore une fois on n'en a pas besoin, on utilise juste la proportionnalité absorbance/concentration que je note A=kc
Oui mais il y en a bien besoin pour savoir combien vaut k pour l'equation finale non ?
Désolé, je n'avais pas vu : "Les mesures sont réalisées dans une cuve de 5 mm" puis "On mesure alors dans une cuve de 1 cm" puis "Dans une cuve de 1 cm".
On n'utilise pas le même spectro dans les trois expériences !
Une fois déterminé k1x=0,801/0,5=1,6 (unité mmol/L) dans la première expérience à 5mm, dans les deux dernières expériences, il faudra prendre k1x=2 x 1,6=3,2 dans les deux expériences finales, pour tenir compte de la longueur de cuve deux fois plus longue.
Ce n'est pas plutot 1602 et 3204 mol/L ?
D'ailleurs dans le calcul finale il ne faudrait pas en fait garder k1x et k2x avec l qui reste a 0.5cm?
1.6 mmol/L ne fait pas 1600mol/L si ?
Une solution d’un composé X, de concentration 5.10-4 mol.L-1 présente une absorbance de 0,801 à λ = 420 nm ; k1x0=A/(X)=0,801/0,5=1,6 (unité mmol/L, indice 0 pour mesure initiale)
et une absorbance de 0,112 à λ = 500 nm : k2x0=0,112/0,5=0,22
Les mesures sont réalisées dans une cuve de 5 mm ; avec donc et mm
On dissout 820 mg d’un composé Y (MM = 234 g.mol-1) dans 100 mL d’eau. La solution obtenue est diluée 100 fois ; concentration = 3,5 mmol/L
On mesure alors dans une cuve de 1 cm
l’absorbance à λ = 420 nm, A = 0,245 ; k1y=0,245/3,5=0,7
et λ = 500 nm, A = 0,744. ; k2y=0,744/3,5=2,1
Dans une cuve de 1 cm ; donc k1y et k2y sont corrects, par contre avec cm est deux fois plus grand que le k1x0 initial, les nouveaux k sont donc k1x=2 k1x0=3,2 et k2x=2 k2x0=0,44
les absorbances suivantes : A = 0,698 à λ = 420 nm ; 0,698=3,2 (X) + 0,7 (Y)
et A = 1,053 à λ = 500 nm. ; 1,053=0,44 (X) + 2,1 (Y)
Pour les calculs numériques en cascade, il faudra bien sûr conserver plus de chiffres significatifs que ceux que j'ai indiqué.
Et évidemment, tout cela aux erreurs de calcul près.
Pour les mesures initial il faut prendre la concentration 5.10^4mol/L donc k doit etre en mol par L non ? Pour avoir k je fais 0.801/5.10^-4 et je trouve k qui est Epsilon*l qui est en mol/L et qui vaut 1602mol/L
plus exactement "je trouve k qui est Epsilon*l qui est en (mol/L)-1 et qui vaut 1602(mol/L)-1" qui vaut bien en prenant comme unité de concentration les mmol/L 1,6(mmol/L)-1
Mais si cela vous complique la vie, restez en mol/L, oubliez k à remplacer par
Quand je disais "unité mmol/L", je pensais bien sûr "unité de concentration mmol/L", mais ce qui va sans dire va mieux en le disant.
Dernière modification par gts2 ; 16/11/2021 à 10h39.