Répondre à la discussion
Affichage des résultats 1 à 15 sur 15

Pour tout entier n>2



  1. #1
    Ahil

    Pour tout entier n>2


    ------

    Pour tou entier n supérieure a 2,soit fn la fonction définie sur [0;1] par fn(x)=x^n-nx+1
    Etudier la postion relatives des courbes Cn et Cn+1
    Il faut faire Fn-Fn+1 je fais et je trouve x^n+1-x^n-x mais pares je ne sais pas comment faire??

    Un coup de main MERCI
    Cordialement

    -----

  2. Publicité
  3. #2
    God's Breath

    Re : Pour tout entier n>2

    Il suffit d'écrire pour mettre le signe en évidence.
    Et Dieu, dans sa colère, pour punir les humains, envoya sur la Terre les mathématiciens.

  4. #3
    Ahil

    Re : Pour tout entier n>2

    mais quand je développe j'obtien pas x^n+1
    aide moi stppp

  5. #4
    God's Breath

    Re : Pour tout entier n>2

    Citation Envoyé par Ahil Voir le message
    Pour tou entier n supérieure a 2,soit fn la fonction définie sur [0;1] par fn(x)=x^n-nx+1
    Si , alors !!!
    Et Dieu, dans sa colère, pour punir les humains, envoya sur la Terre les mathématiciens.

  6. #5
    Ahil

    Re : Pour tout entier n>2

    mais c'est quand on dévelopee x^n(x-1)-x

  7. A voir en vidéo sur Futura
  8. #6
    God's Breath

    Re : Pour tout entier n>2

    !!!
    Et Dieu, dans sa colère, pour punir les humains, envoya sur la Terre les mathématiciens.

  9. Publicité
  10. #7
    Ahil

    Re : Pour tout entier n>2

    et aprés comment je fait la postion relative des courbes a partir de ce résultat

  11. #8
    God's Breath

    Re : Pour tout entier n>2

    Mon message #6 donne une expression de sous une forme qui permet facilement d'en déterminer le signe donc de connaître la position relative des graphes.
    Et Dieu, dans sa colère, pour punir les humains, envoya sur la Terre les mathématiciens.

  12. #9
    Ahil

    Re : Pour tout entier n>2

    comment j'étudie le sigen de sa c'est sa mon probléme je n'arrive pas a faire

  13. #10
    Gwyddon

    Re : Pour tout entier n>2

    Bonsoir,

    God's Breath est adorable avec toi, mais il serait temps que tu te prennes par la main. As-tu lu ton cours au moins une fois ? Nous ne sommes pas là pour faire le travail à ta place, juste pour te guider si tu fais au moins une partie des efforts de ton côté, ce qui n'est absolument pas le cas dans cette discussion.

    Parce que là c'est quand même très basique une fois arrivée à l'équation que t'as donnée God's Breath
    A quitté FuturaSciences. Merci de ne PAS me contacter par MP.

  14. #11
    God's Breath

    Re : Pour tout entier n>2

    Pour étudier le signe de , il suffit de connaîre
    – le signe de
    – le signe de
    – le signe de
    et d'utiliser les règles des signes.
    Et Dieu, dans sa colère, pour punir les humains, envoya sur la Terre les mathématiciens.

  15. #12
    Ahil

    Re : Pour tout entier n>2

    je fait un tableau de signe je sais sa mais enfaite le sigen de -x sur [0;1] c'est quoi?

  16. Publicité
  17. #13
    Ahil

    Re : Pour tout entier n>2

    le signe de x^1 +
    le signe de x-1 -
    mais le sigen de -x sa fait - ??

    si c'est bon donc le sigen totale est positive donc fn+1 inférieure ou égale a fn ?? A cofirmer

  18. #14
    God's Breath

    Re : Pour tout entier n>2

    Sur [0,1] x est positif, donc -x est négatif !!!
    Secoue-toi un peu !!
    Et Dieu, dans sa colère, pour punir les humains, envoya sur la Terre les mathématiciens.

  19. #15
    Ahil

    Re : Pour tout entier n>2

    ah oui je me suis tromper dsl en plus sur ma feuille j'ai marquer sa
    on en conclu que le signe totale est positive donc fn+1 et inférieure ou égale a fn

Sur le même thème :

Discussions similaires

  1. Quelle altitude pour voir la Terre en entier ?
    Par cybermaman001 dans le forum Planètes et Exobiologie
    Réponses: 70
    Dernier message: 17/10/2017, 20h39
  2. C pour PIC : récupérer le nième bit d'un entier
    Par Toufinet dans le forum Électronique
    Réponses: 24
    Dernier message: 21/02/2009, 14h10
  3. le cube de tout entier naturel
    Par franc15 dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 29/06/2006, 16h57
  4. Tout entier est egal a 1
    Par siris dans le forum Science ludique : la science en s'amusant
    Réponses: 5
    Dernier message: 08/05/2005, 15h32
  5. Des Silicon villages pour innover dans le monde entier ?
    Par RSSBot dans le forum Commentez les actus, dossiers et définitions
    Réponses: 0
    Dernier message: 07/05/2005, 11h14