Aide pour un exercice (suite)
Répondre à la discussion
Page 1 sur 2 1 DernièreDernière
Affichage des résultats 1 à 30 sur 38

Aide pour un exercice (suite)



  1. #1
    invite2fcf3872

    Aide pour un exercice (suite)


    ------

    Alors voilà j'ai eu un exercice de math mais je bloque sur une question pouvez vous m'aidez svp c urgent
    alors voila
    la suite est définie par U0=3 et Un+1= 3Un +1/ 2Un +2

    La question: montrer que pour tout n appartenant à N
    Un+1 -1< 1/2(Un -1) mercii (j'ai démontrer au préalable que Un>0 pour tout n)
    mercii d'avance pour les reponses

    -----

  2. #2
    invite2c46a2cb

    Re : Aide pour un exercice (suite)

    Bonjour !

    Pour commencer, j'aimerais m'assurer de la priorité des opérations que tu nous proposes là.
    On parle bien de la suite définie par et ? Si c'est le cas, tu as dû oublier quelques parenthèses..
    Ensuite, s'agit-il bien de démontrer que ?

    Comme ça, ça évitera de partir sur de mauvaises pistes.
    Ah, si tu pouvais préciser ton niveau scolaire aussi. Merci. ^^

    Cordialement !

  3. #3
    Duke Alchemist

    Re : Aide pour un exercice (suite)

    Bonjour.

    Que dirais-tu de partir de l'expression de Un+1 et d'y retrancher 1 ?
    Tu aboutis à une expression du type (a*un + b)/(c*un + d) et avec ce que tu as montré précédemment, tu peux très vite aboutir à ce qui est demandé.

    Duke.

  4. #4
    invite2fcf3872

    Re : Aide pour un exercice (suite)

    oui voilà c'est exactement ça que je dois démontrer pour tout n et j'ai essayé avec un raisonnement par récurrence mais ça n'aboutit pas. Ou du moins je ne trouve pas le bon résultat
    merci de m'aider!

  5. A voir en vidéo sur Futura
  6. #5
    invite2fcf3872

    Re : Aide pour un exercice (suite)

    Bonjour ben j'ai fais ça aussi mais je trouves un truc bizarre et du coup je ne comprend pas comment le démontrer pour tout n

  7. #6
    invite2c46a2cb

    Re : Aide pour un exercice (suite)

    Sinon, tu peux aussi de partir de l'expression finale (c'est ce que j'ai fait de mon côté), et prouver qu'elle est toujours vraie. Tu peux nous mettre ce que tu as fait pour le moment ?

  8. #7
    invite2fcf3872

    Re : Aide pour un exercice (suite)

    oui alors voila moi je suis parti de Un+1 - 1 et j'ai trouvé que c'était égal à Un -1/ 2Un +2 ensuite j'ai factorisé le
    dénominateur et ça donne (1/2)(Un -1/ Un + 1) donc ensuite je serais tenté à dire que c'est forcément plus petit que (1/2)Un -1 car c'est divisé par un nombre plus grand (Un +1) car Un>0
    mais je ne sais pas si mon résonnement est juste
    Et pour répondre à la question de tout à l'heure je rentre en Prépa

  9. #8
    invite2fcf3872

    Re : Aide pour un exercice (suite)

    Je précise parce que ça peut aider que la question suivante est en déduire que Un+1 - 1 < (1/2)^n

  10. #9
    invite2c46a2cb

    Re : Aide pour un exercice (suite)

    Citation Envoyé par line416 Voir le message
    oui alors voila moi je suis parti de Un+1 - 1 et j'ai trouvé que c'était égal à Un -1/ 2Un +2 ensuite j'ai factorisé le dénominateur et ça donne (1/2)(Un -1/ Un + 1) donc ensuite je serais tenté à dire que c'est forcément plus petit que (1/2)Un -1 car c'est divisé par un nombre plus grand (Un +1) car Un>0
    mais je ne sais pas si mon résonnement est juste
    C'est ici que ça coince. Si , c'est faux. Est-ce que tu as étudié le sens de variation de ta suite lors d'une question précédente ?

  11. #10
    invite2fcf3872

    Re : Aide pour un exercice (suite)

    Non il ne demande pas d'étudier les variations de la suite. J'ai omis de dire qu'ils prennent la valeur absolue de Un+1 -1 et de Un - 1 de l'autre côté

  12. #11
    invite2c46a2cb

    Re : Aide pour un exercice (suite)

    Citation Envoyé par line416 Voir le message
    J'ai omis de dire qu'ils prennent la valeur absolue de Un+1 -1 et de Un - 1 de l'autre côté
    C'est-à-dire qu'il faut plutôt qu'on prouve que ?

  13. #12
    invite2fcf3872

    Re : Aide pour un exercice (suite)

    ouiiiii sauf que c'est 1/2 de valeur absolue de Un - 1 et non +

  14. #13
    invite51d17075
    Animateur Mathématiques

    Re : Aide pour un exercice (suite)

    Citation Envoyé par line416 Voir le message
    Bonjour ben j'ai fais ça aussi mais je trouves un truc bizarre et du coup je ne comprend pas comment le démontrer pour tout n
    quel truc bizarre.
    je trouve U(n+1)-1=(U(n)-1)/2(U(n)+1)

  15. #14
    invite2c46a2cb

    Re : Aide pour un exercice (suite)

    Ah oui pardon, donc
    Pour ça, ça nous arrangerait bien de montrer que .. Comme ça, on dégagerait les valeurs absolues. Enfin, c'est comme ça que je ferais. Une petite récurrence ?

  16. #15
    invite2fcf3872

    Re : Aide pour un exercice (suite)

    Oui ansset je trouve ça aussi et j'ai factorisé par (1/2) mais après je fais quoi?

  17. #16
    invite2fcf3872

    Re : Aide pour un exercice (suite)

    Mais U(n+1)-1=(U(n)-1)/2(U(n)+1) or le dénominateur >0 (déjà démontré par récurrence au début)

  18. #17
    invite2c46a2cb

    Re : Aide pour un exercice (suite)

    Et alors?
    Et où sont passées les valeurs absolues ?

  19. #18
    invite2fcf3872

    Re : Aide pour un exercice (suite)

    Citation Envoyé par Teddy-mension Voir le message
    Et alors ?
    Ben sa revient à démontrer que U(n)-1>0 <=> U(n)>1 non?

  20. #19
    invite2c46a2cb

    Re : Aide pour un exercice (suite)

    Citation Envoyé par line416 Voir le message
    Ben sa revient à démontrer que U(n)-1>0 <=> U(n)>1 non?
    Pourquoi tu veux démontrer ça.. ?

  21. #20
    invite2fcf3872

    Re : Aide pour un exercice (suite)

    Citation Envoyé par Teddy-mension Voir le message
    Pourquoi tu veux démontrer ça.. ?
    Je sais pas je sais plus!!ça me décourage lol

  22. #21
    invite2c46a2cb

    Re : Aide pour un exercice (suite)

    Bon on reprend, parce que personnellement je me suis aussi emmêlé entre les et les . x)

    La suite () est définie par et
    On sait que .

    On nous demande de prouver que

    Pour cela, tu as remplacé par l'expression de l'énoncé.
    Soit .

    Tu as ensuite simplifié / réduit, ce qui t'as donné : .

    Je te laisse continuer (on est tout prêt là) !

  23. #22
    invite2fcf3872

    Re : Aide pour un exercice (suite)

    ben c'est justement ici que je bloque. Pour moi après c'est "logique" que le membre de gauche est plus petit que le membre de droit pck il est divisé par un nombre plus grand lol

    et le (1/2) on peut l'enlever de la valeur absolue puisqu'il est positif

  24. #23
    invite2c46a2cb

    Re : Aide pour un exercice (suite)

    Ce qui donne donc . On pourrait pas encore simplifier ?

    Citation Envoyé par line416 Voir le message
    Pour moi après c'est "logique" que le membre de gauche est plus petit que le membre de droit pck il est divisé par un nombre plus grand lol
    Plus grand que quoi ?

  25. #24
    invite2fcf3872

    Re : Aide pour un exercice (suite)

    Ahhhh vous voulez dire qu'on se ramène à une inégalité avec 0 et donc on aura U(n+1)>0 ce qui est vrai car pour tout n U(n)>0? c'est ça? mdr

  26. #25
    invite2c46a2cb

    Re : Aide pour un exercice (suite)

    Citation Envoyé par line416 Voir le message
    Ahhhh vous voulez dire qu'on se ramène à une inégalité avec 0 et donc on aura U(n+1)>0
    ?
    Bah non, c'est pas ça..

  27. #26
    invite2fcf3872

    Re : Aide pour un exercice (suite)

    pfff --' j'abandonne!!!!!!!

  28. #27
    invite2c46a2cb

    Re : Aide pour un exercice (suite)

    Citation Envoyé par line416 Voir le message
    pfff --' j'abandonne!!!!!!!
    Eh ben, si tu recules devant si peu de difficulté, ça promet la prépa.. Allez on se ressaisit.
    Commence par répondre aux questions de mon message #23 !

  29. #28
    invite2fcf3872

    Re : Aide pour un exercice (suite)

    Citation Envoyé par Teddy-mension Voir le message
    Ce qui donne donc . On pourrait pas encore simplifier ?

    Plus grand que quoi ?
    On ne se moque pas svp les suites n'ont jamais étaient mn fort!
    Alors vous m'avez demandé si on ne pouvais pas encore simplifier ! moi personnellement j'aurai divisé par U(n)-1/U(n)+1 (ce qui ne change pa le signe car c'est une valeur absolue) et donc à la place de divisé on multiplie par l'inverse sa se simplifie et donne U(n+1)>0 mais vous m'avez dit non! donc je vois pas

  30. #29
    invite51d17075
    Animateur Mathématiques

    Re : Aide pour un exercice (suite)

    pardon,
    mais je n'ai pas saisi d'ou venaient les valeurs absolues ????
    elles sont dans l'enoncé de la question ?

  31. #30
    invite2fcf3872

    Re : Aide pour un exercice (suite)

    Citation Envoyé par ansset Voir le message
    pardon,
    mais je n'ai pas saisi d'ou venaient les valeurs absolues ????
    elles sont dans l'enoncé de la question ?
    Oui elles sont dans l'énoncé j'avais oublié de le préciser

Page 1 sur 2 1 DernièreDernière

Discussions similaires

  1. Besoin d'aide pour une suite logique !!
    Par invite0e421b77 dans le forum Science ludique : la science en s'amusant
    Réponses: 19
    Dernier message: 26/11/2012, 17h23
  2. Aide pour suite logique !
    Par inviteb9964adc dans le forum Mathématiques du collège et du lycée
    Réponses: 1
    Dernier message: 18/05/2009, 14h17
  3. aide matlab pour afficher une suite
    Par inviteb3b51744 dans le forum Logiciel - Software - Open Source
    Réponses: 1
    Dernier message: 09/06/2007, 02h40
  4. Aide pour variation d'une suite
    Par mattveil dans le forum Mathématiques du collège et du lycée
    Réponses: 13
    Dernier message: 04/06/2007, 22h07
  5. Recherche un exercice corrigé de suite+intégrale pour TermS
    Par invite8241b23e dans le forum Mathématiques du collège et du lycée
    Réponses: 4
    Dernier message: 07/05/2007, 14h59