Découvrir une égalité
Répondre à la discussion
Affichage des résultats 1 à 7 sur 7

Découvrir une égalité



  1. #1
    inviteabdcaa8e

    Exclamation Découvrir une égalité


    ------

    Bonjour à tous,
    J'ai un problème avec la dernière question d'un de mes exo de math, j'espère que vous pourrez m'aider, merci :

    On a la suite Un = (n (n+1) /2)²
    et V1=1 et Vn = Vn-1+n^3

    Par la suite on trouve que les termes d'indices 1 à 5 sont identiques pour les suites (Un) et (Vn) en conclusion que (Un) = (Vn)

    voici mon problème

    c) On admet que les suites U et V sont égales. En déduire que pour tout entier n > ou = 1

    (1+2+...+n)² = 1^3+2^3+...+n^3

    Comment dois-je faire pour prouver cette égalité. Y a t'il une formule ?


    Merci à ceux qui m'aideront ou qui essayeront !

    -----

  2. #2
    invite88ef51f0

    Re : Découvrir une égalité

    Salut,
    Sais-tu ce que vaut ?

  3. #3
    inviteabdcaa8e

    Re : Découvrir une égalité

    Pour n = 1 on a (Un) et (Vn) = 1
    n = 2 (Un) et (Vn) = 9
    3 36
    4 100
    5 225

    Voilà j'espère que ça t'aidera !

  4. #4
    invitec314d025

    Re : Découvrir une égalité

    Citation Envoyé par Hélo01
    Voilà j'espère que ça t'aidera !
    Je ne pense pas que Coincoin ait besoin d'aide

    Est-ce que tu sais calculer la somme des termes d'une suite arithmétiques ?

  5. A voir en vidéo sur Futura
  6. #5
    inviteabdcaa8e

    Re : Découvrir une égalité

    moi aussi je pense puique c'est lui qui m'aide pourquoi ais-je mis ça

  7. #6
    inviteabdcaa8e

    Re : Découvrir une égalité

    oui je sais calculer la somme d'une suite de terme arythmétique mais où cela m'amenne et je ne vois pas où l'appliquer

  8. #7
    inviteabdcaa8e

    Re : Découvrir une égalité

    désolé je viens de comprendre merci pour votre aide !!!!!!!!!

Discussions similaires

  1. Suites, montrer une égalité
    Par invite5731219b dans le forum Mathématiques du supérieur
    Réponses: 6
    Dernier message: 04/02/2006, 16h32
  2. Suites... prouver une égalité
    Par invite7aef8f65 dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 07/11/2005, 13h29
  3. Tant de violence pour une égalité
    Par ClaudeH dans le forum [ARCHIVE] Ethique
    Réponses: 7
    Dernier message: 28/07/2005, 17h02