systeme d'equation de degré 3
Répondre à la discussion
Affichage des résultats 1 à 7 sur 7

systeme d'equation de degré 3



  1. #1
    inviteb484d919

    systeme d'equation de degré 3


    ------

    le systeme est le suivant:

    Xo=a(Xo)^3 + b(Xo)^2 + cXo + d
    X1=a(X1)^3 + b(X1)^2 + cX1 + d
    X2=a(X2)^3 + b(X2)^2 + cX2 + d
    X3=a(X3)^3 + b(X3)^2 + cX3 + d

    le but ici est de trouver a,b,c,d en fonction de XO,X1,X2,X3 qui sont des variables connues.

    pour votre curiosité:
    l'application de ce calcul est une interpolation spline cubique.
    En effet on a 4 echantillons qui sont Xo,X1,X2,X3 et il faut les relier par un plynome de degré 3. Ceci est facilement réalisable sous matlab mais il faut le réaliser en synthèse c'est à dire sur un DSP (langage assembleur)
    Mais d'une théorique avant de l'implémenter en DSP

    Cordialment

    -----

  2. #2
    Bleyblue

    Re : systeme d'equation de degré 3

    Bonjour !

    Méthode de Gauss, discuter en fonctions des paramètres x0,x1,x2,x3

  3. #3
    invitec053041c

    Re : systeme d'equation de degré 3

    Tu peux trouver un polynôme qui passe par les points que tu souhaite sans avoir à résoudre de système, grâce aux polynômes d'interpolation de Lagrange.

    Pa exemple, si tu veux un polynôme de degré 2 qui passe par (1,6) (2,9) (3,2), tu construis ces 3 polynômes d'abord:

    1er Polynôme qui vaut 0 pour 2 et 3 et 1 au point 1:

    2eme polynôme qui vaut 0 en 1 et 3 et 1 au point 2:

    3eme polynôme qui vaut 0 en 1 et 2 et 1 au point 3:

    Et le polynôme que tu souhaitais est:


  4. #4
    invitec053041c

    Re : systeme d'equation de degré 3

    D'ailleurs tu ne pourras pas faire passer un polynôme de degré 3 par (X0,X0),(X1,X1),(X2,X2),(X3,X3 )Tu n'auras que l'identité.

  5. A voir en vidéo sur Futura
  6. #5
    inviteb484d919

    Re : systeme d'equation de degré 3

    tu as raison g mal recopier mon probleme le systeme est évidemment:
    y0=aX0^3+bX0^2+cX0+d
    y1=aX1^3+bX1^2+cX1+d
    y2=aX2^3+bX2^2+cX2+d
    y3=aX3^3+bX3^2+cX3+d

  7. #6
    inviteb484d919

    Re : systeme d'equation de degré 3

    il faut donc exprimer a,b,c,d en fonction de Xi et Yi

  8. #7
    invitec053041c

    Re : systeme d'equation de degré 3

    Utilise le polynôme d'interpolation de Lagrange comme je t'ai expliqué.
    Tu n'as qu'à le développer pour pouvoir identifier les coefficients.

Discussions similaires

  1. Résolution d'équation du 3ème degré
    Par invitea7fcfc37 dans le forum Mathématiques du supérieur
    Réponses: 19
    Dernier message: 30/07/2010, 16h10
  2. Systeme d'équation
    Par invite693d963c dans le forum Mathématiques du collège et du lycée
    Réponses: 8
    Dernier message: 01/10/2007, 22h17
  3. système d'équation
    Par invite1a4718dd dans le forum Mathématiques du supérieur
    Réponses: 27
    Dernier message: 05/09/2007, 18h23
  4. [L1/L2] système d'équation 2 inconnus (degré>2) pour maximisation
    Par invitefdda737e dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 10/09/2006, 17h56
  5. système d'équation
    Par invited5a76ec2 dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 30/09/2005, 22h16