Convolution et Correlation
Répondre à la discussion
Affichage des résultats 1 à 7 sur 7

Convolution et Correlation



  1. #1
    invite31b5cbad

    Convolution et Correlation


    ------

    Bonjour,

    En traitement du signal, j'ai a peu pres compris ce que sont la convolution et la correlation.

    Mais je n'arrive pas a comprendre comment une si petite difference dans les formules (un plus ou un moins Tau apres la variable, generalement le temps) peut avoir des effets physiques aussi marques?

    La convolution sert par exemple a calculer en automatique la reponse d'un systeme (d'ou la multiplication cause*effet) tout en tenant compte de l'historique du systeme (d'ou l'integrale en temps). Ca permet aussi de connaitre l'alcoolemie (la encore, consommation*effet integres dans le temps).

    Ca, je le comprends bien.

    Mais comment un simple changement de signe peut changer la convolution en correlation qui, elle, a des implications physiques tres differentes (reconnaissance de signal par reconnaissance de spectre, application au radar).

    Comment est-ce possible? Qu'est-ce qu'il se passe?

    Merci!

    -----

  2. #2
    cedbont

    Re : Convolution et Correlation

    Bonjour,
    je n'ai jamais utilisé la convolution et la corrélation, mais c'est peut-être du même ordre que dans la fonction x : - > exp :
    lim(exp,+oo) = +oo et lim(exp,-oo) = 0.

  3. #3
    invite88ef51f0

    Re : Convolution et Correlation

    Salut,
    L'intégrale ne porte pas sur la même variable, non ? Ce n'est pas juste une question de signe...

  4. #4
    invite31b5cbad

    Re : Convolution et Correlation

    En effet on integre sur Tau et non t, mais c'est pareil pour la convolution et la correlation... donc il n'y a effectivement qu'un changement de signe entre les deux. Ou alors je me trompe mais je crois pas.

  5. A voir en vidéo sur Futura
  6. #5
    invite88ef51f0

    Re : Convolution et Correlation

    Convolution :
    Corrélation :
    Tu peux faire le changement de variable que tu veux, ça ne donnera pas la même (même en changeant le signe) : tu peux voir que dans la première expression la variable d'intégration n'est présente que dans g alors que dans la deuxième, elle est présente dans les deux fonctions.

    Pour la convolution, tu balayes avec une fonction. Pour la corrélation, tu balayes les deux fonctions ensemble. D'où les interprétations différentes.

  7. #6
    invite31b5cbad

    Re : Convolution et Correlation

    Ok merci beaucoup j'ai du mal prendre mon cours. Cool, merci!

  8. #7
    albanxiii
    Modérateur

    Re : Convolution et Correlation

    Citation Envoyé par Coincoin Voir le message
    Convolution :
    Petite typo ici :
    Not only is it not right, it's not even wrong!

Discussions similaires

  1. Corrélation et signal
    Par invite31b5cbad dans le forum Physique
    Réponses: 0
    Dernier message: 03/07/2007, 22h11
  2. pb de correlation
    Par invited4451bba dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 25/10/2006, 13h09
  3. convolution
    Par invite2c5f3e29 dans le forum Mathématiques du supérieur
    Réponses: 9
    Dernier message: 16/08/2005, 10h58
  4. facteur de corrélation
    Par invite174e501a dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 02/06/2005, 08h51
  5. Convolution
    Par invite08d562c1 dans le forum Mathématiques du supérieur
    Réponses: 8
    Dernier message: 06/01/2005, 13h09