equations differentiels
Répondre à la discussion
Affichage des résultats 1 à 7 sur 7

equations differentiels



  1. #1
    invitea180b11d

    equations differentiels


    ------

    salut
    j'amerais comprendre ce que veut dire une equation differentielle homogene
    je connais la definition mais le probleme est que je vois pas a quoi ca sert de verifier f(ax,ay)=a^n.f(x,y)
    j'espere que je me suis bien exprimé
    merci

    -----

  2. #2
    invited1ef48e5

    Re : equations differentiels

    Une equation differentielle homogene est sans second membre,

    par exemple : a*X'(t) + b*X(t) = 0

    au contraire de a*X'(t) + b*X(t) = c qui n'est pas homogene

    '

  3. #3
    invitea180b11d

    Re : equations differentiels

    Citation Envoyé par Shadok Voir le message
    Une equation differentielle homogene est sans second membre,

    par exemple : a*X'(t) + b*X(t) = 0

    au contraire de a*X'(t) + b*X(t) = c qui n'est pas homogene

    '
    oui mais quel est le rapport avec la formule que jai ecrit

  4. #4
    invitef16d06a2

    Re : equations differentiels

    Citation Envoyé par someone00 Voir le message
    oui mais quel est le rapport avec la formule que jai ecrit
    elle sort d'ou ta formule

  5. A voir en vidéo sur Futura
  6. #5
    invite9c9b9968

    Re : equations differentiels

    Citation Envoyé par someone00 Voir le message
    oui mais quel est le rapport avec la formule que jai ecrit
    Ce qu'a écrit Shadok est pour le cas très particulier des équations différentielles linéaires d'ordre 1.

    Citation Envoyé par labostyle Voir le message
    elle sort d'ou ta formule
    Sa formule est liée à une formulation plus générale des équations différentielles, qu'elles soient linéaires ou pas.

    Pour qu'une équation de la forme f(y'(x),y(x)) = 0 soit qualifiée d'homogène, il faut qu'elle vérifie la propriété suivante :

    l'homothétie z(x) = ky(x) laisse invariante l'équation différentielle, et donc si y(x) est solution, z(x) = ky(x) (pour tout k) est aussi solution.


    Il faut donc vérifier pour cela que la fonction f à deux variables soit qualifiée d'homogène, ce qui signifie que f(ax,ay) = anf(x,y)

  7. #6
    invited1ef48e5

    Re : equations differentiels

    Citation Envoyé par Shadok Voir le message
    par exemple :
    Oui en effet j'ai donner un cas particulier ....

  8. #7
    invitef16d06a2

    Re : equations differentiels

    merci Gwyddon pour la démo

Discussions similaires

  1. disjoncteurs différentiels
    Par invite942846d9 dans le forum Dépannage
    Réponses: 4
    Dernier message: 09/12/2006, 23h40
  2. Opérateur différentiels
    Par invite412f80f3 dans le forum Mathématiques du supérieur
    Réponses: 0
    Dernier message: 03/11/2006, 11h46
  3. Systèmes différentiels
    Par invitebb921944 dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 13/04/2006, 21h59
  4. différentiels
    Par invite873be070 dans le forum Technologies
    Réponses: 7
    Dernier message: 11/08/2005, 21h31