J'ai honte...
Répondre à la discussion
Affichage des résultats 1 à 14 sur 14

J'ai honte...



  1. #1
    invite2bf7e9e8

    J'ai honte...


    ------

    Salut tout le monde,
    Voila, j'ai honte, j'arrive pas a resoudre une question qui a l'air vraiment trop simple :
    Voila:

    calculer lim(x->+oo) ln(x)/(x-ln(x))

    C'est du niveau Term S, mais je sais pas pourquoi, je bloque comme un demeure dessus!
    S'il vous plait aidez-moi, j'vais pas tarder a me jeter par la fenetre!

    -----

  2. #2
    invitefa636c3d

    Re : J'ai honte...

    ne fais pas ça pour des maths,
    sérious: factorise le terme dominant en bas et tu verras que cette affaire va surement partir vers 0

  3. #3
    inviteab2b41c6

    Re : J'ai honte...

    si tu utilises la règle de l'Hopital, tu obtiens que ceci vaut la limite de 1/(x-1) lorsque x tend vers 0...Sinon, divise par ln(x) des 2 cotés et utilise le nombre dérivé d'une certaine fonction en un certain point...

  4. #4
    Bleyblue

    Re : J'ai honte...

    En mettant ln(x) en évidence au dénominateur je tombe en effet sur 0 je pense.
    Dernière modification par Zazeglu ; 27/12/2004 à 19h48.

  5. A voir en vidéo sur Futura
  6. #5
    Bleyblue

    Re : J'ai honte...

    Je n'avais pas vu ton message Quinto, on a dut poster en même temps.
    Oui avec l'hospital c'est plus simple à voir

  7. #6
    invite2bf7e9e8

    Re : J'ai honte...

    euh... la regle de l'hopital? a savoir?
    la j'ai encore plus honte lol.

    En fait Zazeglu, par "mettre en evidence", tu veux dire "factoriser par"? Parce que si c'est le cas ca donne:

    ln(x)/ln(x)((x/ln(x))-1)

    Or ca ne donne pas 0...

  8. #7
    invite00411460

    Re : J'ai honte...

    plus simplement et surtout plus instinctivement tu devrais savoir que ln(x) croit beaucoup moins rapidement que x. la différence est d'autant plus marquée que x est grand.

    donc pour x tendant vers l'infini tu peux négliger ln(x) par rapport à x et x-ln(x) est presque égal à x.

    tu as donc maintenant : ln(x)/x

    et bien même raisonnement, ln(x) est toujours bcp plus petit que x, et donc diviser un nombre par un autre bcp plus grand ça fait 0.

    bon c'est clairement pas super rigoureux, mais logique.

  9. #8
    invite2bf7e9e8

    Re : J'ai honte...

    Oui, c'est vrai, j'y ai pense et repense comme ca, mais ce n'est pas un probleme de comprehension dans le fond (la limite je la connais a peu pres), mais, au fond, de redaction... sniff... lol

  10. #9
    invite14507f1b

    Re : J'ai honte...

    BONSOIR OLLE

    "L'INSTINCT ! ", tres tres bon ce type d'approche !!!

    pedagogiquement, un moyen facile d'apprehender une complexité certaine

    " Deux choses instruisent l'homme de toute sa nature : l'instinct et l'expérience. " dixit Blaise Pascal

    Bonne continuation a tous

    ARCHIDUC

  11. #10
    invitef71b523e

    Re : J'ai honte...

    Ou sinon en décomposant en éléments simples:

    lnx/(x-lnx) = (x-x+lnx)/(x-lnx) = x/(x-lnx) - (x-lnx)/(x-lnx)

    = x/(x-lnx) -1 = 1/(1- lnx/x ) -1 -> 0 en +00

  12. #11
    invite2bf7e9e8

    Re : J'ai honte...

    chapeau :P

  13. #12
    Bleyblue

    Re : J'ai honte...

    Non non, je met vraiment ln(X) en évidence au dénominateur

  14. #13
    invite2bf7e9e8

    Re : J'ai honte...

    euh...c'est a dire?

  15. #14
    Bleyblue

    Re : J'ai honte...

    Pardon j'aurais du développé, j'étais occupé sur le moment même faut dire

    Je met donc ln(x) en évidence au dénominateur et je le simplifie avec le ln(x) du numérateur. Il me reste :



    Et là je voit facilement que x/ln(x) tend vers l'infini car ln(x) croit beaucoup moins vite que x. Tu peux d'ailleur vérifié avec ta calculatrice en donnant des valeurs de + en + grande à
    x.

    Je ne sais pas si c'est très claire

Discussions similaires

  1. la honte de l'état français
    Par invite2f5c4633 dans le forum Environnement, développement durable et écologie
    Réponses: 15
    Dernier message: 06/09/2005, 21h36
  2. Fonction zêta : j'ai honte !!!!
    Par inviteb7bc207b dans le forum Mathématiques du supérieur
    Réponses: 9
    Dernier message: 08/08/2005, 15h15
  3. Petite question mais j'ai honte!!
    Par invitef127a3f7 dans le forum Chimie
    Réponses: 9
    Dernier message: 24/05/2005, 18h08