Impossible d'integrer la fonction
Répondre à la discussion
Affichage des résultats 1 à 8 sur 8

Impossible d'integrer la fonction



  1. #1
    invitecfff1830

    Impossible d'integrer la fonction


    ------

    Salut a tous, voila, je suis coince, je n'arrive pas a integrer la fonction
    Si quelqu'un a le courage de m'aider.

    je cherche donc f(x)

    avec

    mu=b

    Intergral [((mu-x)/sigma^2)*exp(-((mu-x)^2)/(2*sigma^2))] *[(-mu/(b-a))+1] *dmu

    mu=a


    j'attends vos reponses avec impatience

    Merci encore

    -----

  2. #2
    invite1237a629

    Re : Impossible d'integrer la fonction

    Salut,

    Ça ressemble à de la proba... En plus bizarre... Tu peux donner le contexte ?


    Et est-ce bien :



    ?

    A mon avis, ce n'est pas possible à calculer, parce qu'on tombera sur une intégrale gaussienne...

  3. #3
    inviteaf1870ed

    Re : Impossible d'integrer la fonction

    En simplifiant, cela revient à intégrer x(a-x)exp(-x²), il y aura une partie intégrable en exp(-x²) et le reste c'est la fonction erf

  4. #4
    invitecfff1830

    Re : Impossible d'integrer la fonction

    En fait cette fonction correspond a une sorte de somme de gaussienne derivee. J'utilise ca dans un programme de simulation monte carlo pour resoudre un probleme de mesure d'orientation de crystaux. Le truc c'est que les maths ca fait longtemps que j'en fais plus comme ca, et j'avoue que je ne sais plus du tout faire cette integration. si vous avez la reponse c'est merveilleux

  5. A voir en vidéo sur Futura
  6. #5
    invitecfff1830

    Re : Impossible d'integrer la fonction

    c'est bien la fonction que tu as ecris mimoimolette

  7. #6
    invite392a8924

    Re : Impossible d'integrer la fonction

    Citation Envoyé par ericcc Voir le message
    En simplifiant, cela revient à intégrer x(a-x)exp(-x²), il y aura une partie intégrable en exp(-x²) et le reste c'est la fonction erf
    c'est exactement , une partie de cette integrale sera simple à caculer l'autre sera l'integrale Gaussien ou erf.

    merci

  8. #7
    invitecfff1830

    Re : Impossible d'integrer la fonction

    Merci pour vos reponse, je vais essayer de le faire, mais je suis vraiment pas sur de savoir comment, comme je le disais cela fait un baille que j'ai pas fait de math, jusqu'a ce que je regarde je ne savais meme pas ce qu'etait la fonction erf avant que vous m'en parliez.

    merci encore je vous tiens au courant

  9. #8
    invite1237a629

    Re : Impossible d'integrer la fonction

    Citation Envoyé par lobachevsky Voir le message
    c'est exactement , une partie de cette integrale sera simple à caculer l'autre sera l'integrale Gaussien ou erf.

    merci
    Et ça sert à quoi de répéter exactement ce qu'il a dit ?

    @ blackull : je te recommande de lire quelques trucs sur la fonction erf (error function), dont il n'est pas possible d'avoir les valeurs exactes.

Discussions similaires

  1. Une chance d'integrer l'insa?
    Par invite6caeb52d dans le forum Orientation après le BAC
    Réponses: 1
    Dernier message: 17/03/2008, 21h04
  2. Une chance d'integrer l'insa?
    Par invite596e04b0 dans le forum Orientation après le BAC
    Réponses: 5
    Dernier message: 03/03/2008, 13h04
  3. Une chance d'integrer l'insa?
    Par invite596e04b0 dans le forum Orientation après le BAC
    Réponses: 9
    Dernier message: 24/02/2008, 20h46
  4. chances d'integrer l'EPA?
    Par invite46a05d69 dans le forum Orientation après le BAC
    Réponses: 3
    Dernier message: 10/12/2007, 15h54
  5. Est-il autorisé d'intégrer ln(x) de 0 à 1 ?
    Par invitea30a0b89 dans le forum Mathématiques du supérieur
    Réponses: 13
    Dernier message: 08/09/2007, 23h37