Soit 2 ensembles A et B , montrer que A inter B = A B implique A=B. Ca me semble tellement évident que je ne sais pas par ou commencer .
-----
23/07/2009, 09h41
#2
inviteaeeb6d8b
Date d'inscription
janvier 1970
Messages
3 834
Re : Intersection et réunion
Bonjour,
par exemple en montrant que est inclus dans (puis réciproquement mais c'est immédiat vu que et jouent des rôles symétriques).
Cliquez pour afficher
23/07/2009, 09h41
#3
Seirios
Date d'inscription
mai 2005
Localisation
Dans le plan complexe
Âge
33
Messages
10 382
Re : Intersection et réunion
Bonjour,
On peut le montrer par une double inclusion ; pour montrer que , on écrit : si , , puisque , donc . Il suffit ensuite de montrer de la même manière que .
If your method does not solve the problem, change the problem.
23/07/2009, 10h04
#4
inviteae1101ca
Date d'inscription
janvier 1970
Messages
116
Re : Intersection et réunion
Envoyé par Romain-des-Bois
Bonjour,
par exemple en montrant que est inclus dans (puis réciproquement mais c'est immédiat vu que et jouent des rôles symétriques).
Cliquez pour afficher
Je sais qu'il faut démontrer la double inclusion ( mais comment), et comment A et B joue des roles symétriques ?
Aujourd'hui
A voir en vidéo sur Futura
23/07/2009, 10h23
#5
inviteaeeb6d8b
Date d'inscription
janvier 1970
Messages
3 834
Re : Intersection et réunion
Envoyé par Shamir88
Je sais qu'il faut démontrer la double inclusion ( mais comment), et comment A et B joue des roles symétriques ?
Tu n'es pas vraiment adepte de l'effort. Prouver que se fait en une ligne (et c'est fait dans le message de Phys2 et le mien).
Quand tu seras parvenu à faire cela, tu verras que prouver recquiert exactement les mêmes arguments.