Répondre à la discussion
Affichage des résultats 1 à 14 sur 14

Problème avec les suites



  1. #1
    Dragonices

    Problème avec les suites


    ------

    Bonjours!
    je finis de réviser pour une interro demain et je regardais un exo qu'on a pas fait:
    il est question de déterminer la limite de la suite (Un) :

    Un = (5n -1)/(5n -2)

    et là je suis bloquer, remonter la puissance?(je vois pas trop comment)
    et on peut pas faire avec 5n /5n
    je veux dire par là on ne peut pas dire que ce sont les termes de + haut degré je pense pas, ça me semble bizarre.

    Merci de vos réponses!

    -----
    Les mots servent à exprimer les idées ; quand l'idée est saisie, oubliez les mots.
    TCHOUANG-TSEU

  2. Publicité
  3. #2
    martini_bird

    Re : Problème avec les suites

    Salut,

    factorise par 5n au numérateur et au dénominateur.

  4. #3
    Romain BERTOUY

    Re : Problème avec les suites

    oui sinon, y'a aussi une astuce avec :

    - 1 = ( - 2) + 1
    Romain

  5. #4
    Dragonices

    Re : Problème avec les suites

    Merci à vous, jy suis arrivé.
    Les mots servent à exprimer les idées ; quand l'idée est saisie, oubliez les mots.
    TCHOUANG-TSEU

  6. #5
    Romain-des-Bois

    Re : Problème avec les suites

    - 1 = ( - 2) + 1[/QUOTE]

    donc

    5^n - 1.....5^n - 2
    -------- = -------- + 1/(5^n - 2)
    5^n - 2.....5^n - 2

    ce qui fait 1 + (1/(5^n - 2))

    lim 5^n - 2 = +infini

    donc 1 sur tout ca en plus infini = 0
    donc lim de tout ca = 1




    Oui mais ?

    Ne peut-on pas conclure directement : rapport des termes de plus haut degré ???

  7. A voir en vidéo sur Futura
  8. #6
    matthias

    Re : Problème avec les suites

    Citation Envoyé par Romain29
    - 1 = ( - 2) + 1
    donc

    5^n - 1.....5^n - 2
    -------- = -------- + 1/(5^n - 2)
    5^n - 2.....5^n - 2

    ce qui fait 1 + (1/(5^n - 2))

    lim 5^n - 2 = +infini

    donc 1 sur tout ca en plus infini = 0
    donc lim de tout ca = 1




    Oui mais ?

    Ne peut-on pas conclure directement : rapport des termes de plus haut degré ???
    Ce ne sont pas des polynômes. Ici c'est la puissance qui tend vers l'infini.
    Regarde ce que donnerait le rapport des termes "de plus haut degré" avec:

  9. Publicité
  10. #7
    enderalartic

    Re : Problème avec les suites

    perso j aurais plutot vu : 5^n >0 donc
    un = 5^n(1 -1/ (5^n))
    ----------------
    5^n(1 -2/ (5^n))
    simplifie
    un =1-(1/5^n)
    ----------
    1-(2/5^n)
    1/5^n --> 0
    2/5^n -->0
    un --> 1

    sinon oui c est intuitif en regardant les termes de plus haut degré, de plus le numerateur est plus grand donc asymptotique par "au dessus"

  11. #8
    matthias

    Re : Problème avec les suites

    Citation Envoyé par enderalartic
    perso j aurais plutot vu : 5^n >0 donc
    un = 5^n(1 -1/ (5^n))
    ----------------
    5^n(1 -2/ (5^n))
    simplifie
    un =1-(1/5^n)
    ----------
    1-(2/5^n)
    1/5^n --> 0
    2/5^n -->0
    un --> 1
    C'est exactement la méthode proposée par martini_bird.

    Citation Envoyé par enderalartic
    sinon oui c est intuitif en regardant les termes de plus haut degré, de plus le numerateur est plus grand donc asymptotique par "au dessus"
    Ce qui signifie ?

  12. #9
    Romain BERTOUY

    Re : Problème avec les suites

    heu oui c'est vrai que c'est louche l'histoire du plus haut degré ça marche avec les quotients de polynômes comme X^n/X^(n-1), c'est X^n qui l'emporte, dans 5^n c'est n qui tend vers l'infini pas 5...

    au fait Dragonices ton interro s'est bien passé ? tu as eu d'autres suites à faire ? raconte nous, qu'est ce qui est tombé ? ben oui, c'est vrai, si c'était pas pour le lendemain, j'espère que tu y serais arrivé sans notre aide

    Sinon, pour les méthodes, prends celle que tu comprends le mieux (et qui marche bien sur)
    Romain

  13. #10
    enderalartic

    Re : Problème avec les suites

    Citation Envoyé par matthias
    C'est exactement la méthode proposée par martini_bird.
    en effet, en plus devellopée je ne l avais pas vue, au vue de la réponse de romain j ai cru que la question etait en suspend

    Citation Envoyé par matthias
    Ce qui signifie ?
    que juste en regardant la suite tu as la reponse, la démontrer c'est toujours autre chose, mais quand on connait le resultat, ca évite qu une erreur de calcul fasse avoir une mauvaise note.
    sinon c est une suite donc discontinue mais bon tu peux l assimiler a une fonction, celle ci en tout cas

  14. #11
    matthias

    Re : Problème avec les suites

    Citation Envoyé par enderalartic
    que juste en regardant la suite tu as la reponse, la démontrer c'est toujours autre chose, mais quand on connait le resultat, ca évite qu une erreur de calcul fasse avoir une mauvaise note.
    sinon c est une suite donc discontinue mais bon tu peux l assimiler a une fonction, celle ci en tout cas
    Que le résultat soit intuitif je suis assez d'accord, mais pour ce qui est des "termes de plus haut degré", lis la réponse que j'ai donnée à Romain.
    Si tu passes par des fonctions, tu auras des exponentielles et non des polynômes.

  15. #12
    enderalartic

    Re : Problème avec les suites

    exponentiel est un degré en lui même, superieur et different aux polynomes O(a^x) > O(x^n) avec a>1 si mes souvenirs sont bons

  16. Publicité
  17. #13
    matthias

    Re : Problème avec les suites

    Citation Envoyé par enderalartic
    exponentiel est un degré en lui même
    c'est une manière de dire les choses ...

  18. #14
    Dragonices

    Re : Problème avec les suites

    ouh là, je reviens très en retard ms je ne pensais pas que autant de personne serait revenue après car je pensais que la réponse était donnée.
    Sinon mon interro s'est bien passé, j'ai eu 16 sauf erreur de ma part, ms on a pas de suite ds ce genre là, bien que du coup j'aurais surement sû la faire.

    Merci à tous pr vos réponse.
    Les mots servent à exprimer les idées ; quand l'idée est saisie, oubliez les mots.
    TCHOUANG-TSEU

Sur le même thème :

Discussions similaires

  1. Problème avec un exercice sur les suites
    Par Mathildaa dans le forum Mathématiques du collège et du lycée
    Réponses: 2
    Dernier message: 07/02/2007, 16h45
  2. problème avec un exercice sur les suites
    Par Mathildaa dans le forum Mathématiques du collège et du lycée
    Réponses: 1
    Dernier message: 09/01/2007, 17h44
  3. problème avec les suites!!
    Par n-anouchka dans le forum Mathématiques du collège et du lycée
    Réponses: 6
    Dernier message: 05/11/2006, 15h03
  4. Problème de méthodes avec les suites
    Par Jeremouse1 dans le forum Mathématiques du collège et du lycée
    Réponses: 4
    Dernier message: 25/04/2006, 20h41
  5. probleme avec les suites
    Par jeremy Q dans le forum Mathématiques du supérieur
    Réponses: 13
    Dernier message: 06/03/2006, 22h35