Répondre à la discussion
Affichage des résultats 1 à 6 sur 6

Fonctions dérivables presque partout



  1. #1
    dave58

    Fonctions dérivables presque partout

    Bonjour,

    J'écris un exposé sur la dérivabilité des fonctions. J'ai vu un théorème qui disait que les fonctions à variation bornée sont dérivables presque partout et je me suis posé 2 questions :

    1) Est-ce qu'il existe un théorème plus général ?
    2) Est-ce que les fonctions réglées sont dérivables presque partout ? (Si non, un contre-exemple sera le bienvenu )

    Merci d'avance

    -----


  2. Publicité
  3. #2
    RoBeRTo-BeNDeR

    Re : Fonctions dérivables presque partout

    Bonjour,

    beaucoup de mathématiciens on cru bon que si une fonction était continue alors elle est dérivable presque partout. Mais il existe des fonctions continues non dérivable en tout point (voir Karl Weierstrass ou fonction nulle part dérivable dans Wiki) . Or une application continue est réglée donc ces dîtes fonctions sont réglées mais dérivable nulle part.

    RoBeRTo

  4. #3
    dave58

    Re : Fonctions dérivables presque partout

    Merci pour ta réponse !
    Est-ce que tu saurais s'il existe une classe de fonctions plus large que la classe des fonctions à variation bornée pour laquelle les fonctions sont dérivables presque partout ???

  5. #4
    RoBeRTo-BeNDeR

    Re : Fonctions dérivables presque partout

    çà ne me dit rien mais cette ensemble ci me semble stable par addition et par produit par un scalaire, quelle définition donnerai tu à "dérivable presque partout"
    C'est à dire non dérivable en seulement un nombre fini de points ou alors que sur tout compact de lR, elle est non dérivable seulement en un nombre fini de points?

    RoBeRTo

  6. #5
    dave58

    Re : Fonctions dérivables presque partout

    La définition qu'on a vu de presque partout c'est : partout sauf sur un ensemble de mesure nulle (L'ensemble de Cantor par exemple est de mesure nulle mais indénombrable...)

  7. A voir en vidéo sur Futura
  8. #6
    RoBeRTo-BeNDeR

    Re : Fonctions dérivables presque partout

    Ok je ne connaissais pas cette définition là.

  9. Publicité

Sur le même thème :

Discussions similaires

  1. Actu - En bref : l'agriculture bio européenne s'étend presque partout
    Par RSSBot dans le forum Commentez les actus, dossiers et définitions
    Réponses: 32
    Dernier message: 05/03/2010, 08h28
  2. Fonctions dérivables** /aide S.V.P
    Par AlphaPrime dans le forum Mathématiques du collège et du lycée
    Réponses: 14
    Dernier message: 30/11/2008, 17h18
  3. Fonctions dérivables** /aide S.V.P
    Par AlphaPrime dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 30/11/2008, 14h54
  4. Théorème du produit de deux fonctions dérivables ...
    Par raph2712 dans le forum Mathématiques du collège et du lycée
    Réponses: 3
    Dernier message: 15/09/2008, 22h42
  5. les fonctions dérivables 1ère ES
    Par phoebe dans le forum Mathématiques du collège et du lycée
    Réponses: 1
    Dernier message: 18/03/2007, 15h12