Valeurs d'adhérence/densité?
Répondre à la discussion
Affichage des résultats 1 à 6 sur 6

Valeurs d'adhérence/densité?



  1. #1
    invite4e5046fc

    Question Valeurs d'adhérence/densité?


    ------

    Salut ,
    je voudrais savoir ce que sont les valeurs d'adhérence d'une suite qqc. Un

    Supposées connues(intervalle par exemple) , pourquoi l'ensemble des suites Un est dense dans cet intervalle?

    Merci
    _____________________
    A1

    -----

  2. #2
    invite52c52005

    Re : Valeurs d'adhérence/densité?

    Bonjour,

    l est une valeur d'adhérence d'une suite () si il existe une suite extraite de () qui converge vers l.

    Par exemple, la suite telle que



    ne converge pas mais admet deux valeurs d'adhérence que sont 1 et -1. Deux suites extraites peuvent être celles constituées des termes de () de rang pair pour la première et de rang impair pour la seconde.

    Mais que veut dire "Supposées connues(intervalle par exemple) ," ?

  3. #3
    invite4e5046fc

    Re : Valeurs d'adhérence/densité?

    Bien compris pour la 1ère ,merci .
    Pour la 2 ème, je vous donne l'exemple sur lequel je bloque:
    Quelles sont les valeurs d'adhérence de la suite (Un)n définie par : Un = sin(n)?
    En réponse : Nous allons montrer que l'ensemble des valeurs d'adhérence de la suite (Un)n est [-1,1]. Il suffit pour cela de prouver que X={sin(n) , n E N} est dense dans [-1,1].

    Je ne vois donc pas le rapport entre votre définition et la densité demandée .
    Pour l'info , cette question est une application des ss groupes additifs de R .

    Merci encore .
    ______________________
    A1

  4. #4
    invite4793db90

    Re : Valeurs d'adhérence/densité?

    Salut,

    une définition de la densité sans faire appel à la topologie (qui est en fait le vrai cadre pour parler de densité): une partie X de IR est dense dans la partie Y si pour tout y, y' de Y tel que yy', il existe un x de X tel que yxy'.

    Par exemple Q est dense dans IR, mais {1/n, } n'est pas dense dans [0, 1].

    Cordialement.

  5. A voir en vidéo sur Futura
  6. #5
    invite4e5046fc

    Re : Valeurs d'adhérence/densité?

    Oui je sais ce qu'est la densité , Merci en tout cas .
    Mais pourquoi suffit-il de montrer cette densité pour que [-1,1] soit exactement l'ensemble des valeurs adhérentes?

  7. #6
    invite4793db90

    Re : Valeurs d'adhérence/densité?

    Citation Envoyé par A1
    Oui je sais ce qu'est la densité , Merci en tout cas .
    Mais pourquoi suffit-il de montrer cette densité pour que [-1,1] soit exactement l'ensemble des valeurs adhérentes?
    Supposons que l'ensemble X={sin(n), nN} est dense dans [0, 1] (ce qui est vrai). Soit une valeur : quelque soit >0, il existe un n tel que et on peut donc extraire une sous-suite qui converge vers x.

    Pour préciser: à la place de on peut considérer la suite 1/p: pour chaque p on trouve un np tel que . La sous suite (sin np) converge donc vers x.

    Pour 0, le même raisonnement avec les inégalité renversées est bien sûr valable.

Discussions similaires

  1. [Biologie Cellulaire] les molecules d'adherence
    Par invitee93ed335 dans le forum Biologie
    Réponses: 1
    Dernier message: 07/12/2007, 01h26
  2. Réponses: 3
    Dernier message: 25/09/2007, 13h26
  3. problème d'adhérence des monocytes
    Par invite7d0bbf7a dans le forum Biologie
    Réponses: 3
    Dernier message: 26/09/2005, 19h10
  4. valeur d'adhérence
    Par invitefa636c3d dans le forum Mathématiques du supérieur
    Réponses: 7
    Dernier message: 13/12/2004, 20h06
  5. NORMES et valeurs
    Par invitec1a69dfa dans le forum [ARCHIVE] Philosophie
    Réponses: 0
    Dernier message: 03/12/2004, 20h40