Exercices sur les probabilités
Répondre à la discussion
Affichage des résultats 1 à 4 sur 4

Exercices sur les probabilités



  1. #1
    inviteddf96a83

    Exercices sur les probabilités


    ------

    Bonjour,

    J'ai bientôt un examen sur les probas et je suis un peu perdu, j'ai récupéré deux anciens partiels mais je ne suis pas sûr des réponses, pouvez vous me dire ce qui est juste ou me mettre sur la piste si c'est faux ?
    Il s'agit d'un exam d'école d'ingé niveau M3 alors si mes réponses sont trop simplistes dites le moi.

    1) Qu'est ce qu'une variable aléatoire ?

    Une variable aléatoire est un nombre non connu à l'avance parmi un univers.

    2) Une variable aléatoire discrète peut-elle prendre des valeurs réelles (non entières) ?

    Non, une variable discrète est par définition entière.

    3) Sous quelles conditions peut-on dire que l'espérance d'une somme de variables aléatoires est la somme des espérances de ces variables aléatoires ?

    A condition que ces variables aléatoires aient toutes la même espérance.

    4) Qu'est-ce qu'une probabilité ?

    Une probabilité est la possibilité entre 0 et 1 qu'un événement se produise.

    5) Quelle est la différence entre espérance mathématique et moyenne empirique ?

    Une moyenne empirique s'appuie sur un certain nombre d'expériences réelles alors que l'espérance mathématique est la moyenne théorique sur une infinité d'expériences.

    6) Qu'est-ce qu'une statistique ?

    Une statistique est un nombre calculé ou mesuré en fonction d'une moyenne de résultats.

    7) Soient deux événements A et B. Quelle est la probabilité P(A et B) dans le cas général où A et B ne sont pas indépendants ? Dans le cas où ils le sont ?

    Dans le cas où ils sont dépendants : p(A) * p(B) = p(A et B)
    indépendants : p(B|A) * p(A) = p(A et B)

    8) Exprimer (sin x)^3 en fonction de sin(x) et sin(3x) et en utilisant explicitement la formule du binôme de Newton.

    Je suppose qu'il faut transformer (sin x)^3 sous la forme (x + y)^3 mais je ne vois pas du tout comment.

    9) Deux événements indépendants peuvent ils être incompatibles ? A quelle condition ?

    Définition de l'indépendance : p(A) * p(B) = p(A et B)
    incompatibles : p(A et B) = 0
    Donc ils peuvent l'être si p(A) =0 ou p(B) = 0

    10) Une mesure a une incertitude delta. Quelle est la précision de la moyenne de n mesures ?

    C'est sa variance.

    11) Expliquer dans le détail mais sans faire le calcul la démarche à suivre pour calculer l'espérance du carré d'une variable aléatoire.

    E[X²] = ??

    12) Soit X une variable aléatoire continue. Exprimer la probabilité de l'événement {a < X < b}. On supposera ensuite que X prend des valeurs uniformément réparties sur l'intervalle [A,B]. Ré-exprimer cette probabilité en faisant clairement apparaître les paramètres du problème.

    Sans connaître l'univers, cette question n'a aucun sens pour moi.

    13) Deux chasseurs aperçoivent un lièvre et tirent (en même temps). Le premier a 3/4 chances de le tuer et le second 2/3. Quelle est la probabilité que le lièvre s'en sorte ?

    Le lièvre a 1/4 d'échapper au premier et 1/3 au second, donc 1/3 * 1/4 = 1/12 de s'en sortir.

    14) Une usine produit des boulons. Un lot comporte un million de boulons. L'usine s'engage à ce que la proportion de pièces défectueuses noté "p" soit de 1/1000 au maximum. Un ingénieur qualité veut vérifier ce chiffre, il prélève n = 1000 boulons afin de les tester. On appelle X la variable aléatoire discrète qui définit le nombre de boulons défectueux, avec X = Somme(Xi) ; i de 1 à n et Xi = 1 si le boulon est défectueux, 0 sinon. (Donc X varie entre 0 et 1000).
    14a) Montrer que sous certaines conditions qu'il faudra préciser, X est une variable qui suit une loi binomiale. Donner l'expression de Cxn dans la loi binomiale.

    Il s'agit d'une expérience de Bernoulli (échec ou réussite) renouvelée 1000 fois, donc elle suit la loi binomiale.
    Cxn = x! / n! (x - n)!

    14b) Montrer que l'espérance E(X) = np.
    Somme(E(Xi)) de 1 à n = n(0*p(X=0) + 1*p(X=1)) = pn

    14c) Combien de boulons défectueux s'attend-on à trouver lors du prélèvement ?
    On devrait en trouver un seul.




    Merci

    -----

  2. #2
    gg0
    Animateur Mathématiques

    Re : Exercices sur les probabilités

    Bonjour.

    Je n'ai lu que les deux premières réponses, mais déjà c'est bien trop flou (le 1) ou faux (le 2) pour continuer. Je ne sais pas ce que tu appelles M3 (je connais M1 et M2, ou L3, mais pas M3).
    Il faudrait que tu lises un cours, par exemple celui de Jolion à l'insa : http://rfv.insa-lyon.fr/~jolion/PS/poly_stat.pdf

    Cordialement.

  3. #3
    inviteddf96a83

    Re : Exercices sur les probabilités

    Je me suis trompé, L3

  4. #4
    gg0
    Animateur Mathématiques

    Re : Exercices sur les probabilités

    Je m'en doutais.

    Il y a quelques petites chose justes (le début du 5, le 9, le 13, en partie le 14). Je n'ai pas compris ce qie sin(x) vien faire au milieu !!!

    Bon apprentissage !

  5. A voir en vidéo sur Futura

Discussions similaires

  1. Exercices de Probabilités
    Par invite07de3fee dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 19/02/2013, 10h35
  2. exercices probabilités
    Par mav62 dans le forum Mathématiques du collège et du lycée
    Réponses: 6
    Dernier message: 06/04/2012, 09h33
  3. exercices sur les probabilités
    Par invite1d9dd2fa dans le forum Mathématiques du collège et du lycée
    Réponses: 2
    Dernier message: 29/03/2012, 09h17
  4. Exercices sur les probabilités
    Par invitea17849cc dans le forum Mathématiques du collège et du lycée
    Réponses: 5
    Dernier message: 11/05/2010, 22h45
  5. Exercices probabilités
    Par inviteb55a2a32 dans le forum Mathématiques du collège et du lycée
    Réponses: 1
    Dernier message: 11/01/2010, 20h12