Répondre à la discussion
Affichage des résultats 1 à 17 sur 17

résolution numérique problème 4x4



  1. #1
    olle

    bonjour,

    je voudrais savoir quel programme utiliser pour un problème à 4 équations et 4 inconnues qui n'est franchement pas réalisable sur papier.

    avec des arctan, racines carrés etc.

    merci

    -----

  2. Publicité
  3. #2
    Theyggdrazil

    maple ou mathematica !
    "Toute connaissance accessible doit être atteinte par des voies scientifiques" (B. Russell)

  4. #3
    Theyggdrazil

    Par contre je ne sais pas s'il existe des versions d'évaluations, je ne crois pas j'avais déjà cherché...
    "Toute connaissance accessible doit être atteinte par des voies scientifiques" (B. Russell)

  5. #4
    olle

    un grand merci à toi

    mathematica a l'air de convenir et assez instinctif.
    par contre il est occupé à calculer mon système depuis 10 minutes et g un peu peur qu'il n'y arrive jamais

    merci bien.

  6. A voir en vidéo sur Futura
  7. #5
    Coincoin

    Salut,
    Faut dire qu'avec des arctan et racines carrées, je le comprends ton pauvre Mathematica...
    Encore une victoire de Canard !

  8. #6
    Evil.Saien

    Une calculette suffit... par exemple une CASIO GRAPH 60...

  9. Publicité
  10. #7
    olle

    mouahuaihuiahuiahiaohiu

    une bonne dose de rire

  11. #8
    Evil.Saien


    Ben ouais en la programmant bien...

    Humour

  12. #9
    Coincoin

    Pour un système d'équations? Je suis d'accord que les fonctions sont tout ce qu'il y a de plus gentilles et de dérivables, mias je ne connais pas de méthode de résolution approchée (je suppose que tu te contente de la résolution approchée?) pour des systèmes.
    Mais ça doit bien exister...
    Encore une victoire de Canard !

  13. #10
    xavb

    Bonjour!

    Moi aussi j'aurais utilisé la calculatrice en utilisant les matrices?

    je raconte peut-être n'importe quoi mais c'est dur de se rendre compte quand on a pas le système sous les yeux...

  14. #11
    Coincoin

    Moi aussi quand j'ai vu "système d'équations 4*4", j'ai pensé aux matrices... mais le problème c'est qu'apparemment le système est loin d'être linéaire.
    Encore une victoire de Canard !

  15. #12
    olle

    ah non c'est pas linéaire, et interdiction de le rendre linéraire.

    en gros je dois approcher

    ajw+1
    par
    1 / (Ajw+1)(Bjw+1)(Cjw+1)(Djw+1)

    dans une certaine gamme de fréquences w appartient [0-5Hz]
    comme g 4 paramètres: A, B, C, D
    je pensais créer mes 4 équations par des égalités gain/phase pour w=2Hz et w=4Hz

    même en virant les Arctg et les racines, g tj aucun résultat par Mathematica

    (w1^2*A^2 + 1)*(w1^2*B^2 + 1)*(w1^2*C^2 + 1)*(w1^2*D^2 + 1) == 1/(w1^2*a^2 + 1)

    (w2^2*A^2 + 1)*(w2^2*B^2 + 1)*(w2^2*C^2 + 1)*(w2^2*D^2 + 1) == 1/(w2^2*a^2 + 1)

    ((-w1)*(A + B + C + D) + w1^3*((A + B)*C*D + (C + D)*A*B))/(1 - w1^2*(A*B + C*D + (A + B)*(C + D)) + w1^4*A*B*C*D) == w1*a

    ((-w2)*(A + B + C + D) + w2^3*((A + B)*C*D + (C + D)*A*B))/(1 - w2^2*(A*B + C*D + (A + B)*(C + D)) + w2^4*A*B*C*D) == w2*a}, {A, B, C, D}]

    où w1, w2 et a sont des constantes données.

  16. Publicité
  17. #13
    Rincevent

    Bonjour,

    si tu veux mon avis, le plus simple (et surtout le plus sûr) est d'écrire toi-même un programme pour résoudre ce genre de trucs... je ne sais pas si tu connais un langage quelconque (de programmation... ), mais tu n'as pas besoin d'être un expert pour cela. Tu peux trouver des petits programmes (à adapter à ta convenance) sur

    numerical recipies en Fortran ou en C(++). Après, faut juste que tu saches comment compiler un programme et l'utiliser.

    mais de manière générale, si tu ne cherches pas une solution analytique (ce qui est rarement le cas quand on regarde des trucs non-linéaires), le plus simple est d'écrire soit-même un code (sauf si tu peux/souhaites faire des calculs perturbatifs).

  18. #14
    xavb

    ça me rapelle ce que je faisais en cours d'automatisme ça (gain,phase,arctan,w) ça a un rapport avec les diagrammes de Bode, les filtres, des choses comme ça?

  19. #15
    olle

    oui, le but est d'approcher une fonction de transfert physiquement irréalisable par une autre réalisable

  20. #16
    Quinto

    Si ton système n'est pas linéaire, rien ne t'empeche de le rendre linéaire --> développement en série autour du point qui t'interesse.

  21. #17
    Evil.Saien

    Absoluement, c'est d'ailleurs la méthode préconisée dans ce cas, linéariser autour du point qui est interessant...
    Je te conseille ce livre la, que j'ai utilisé et qui est tres bien :
    http://www.amazon.fr/exec/obidos/ASI...149588-0857068

Discussions similaires

  1. Résolution numérique d'équation différentielle complexe :
    Par Ksilver dans le forum Mathématiques du supérieur
    Réponses: 0
    Dernier message: 16/04/2007, 11h48
  2. resolution numerique
    Par ABN84 dans le forum Physique
    Réponses: 0
    Dernier message: 24/03/2007, 01h31
  3. resolution numerique d eq differentiel
    Par castader dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 10/02/2007, 12h29
  4. réseau de neurones et résolution numérique.
    Par Cougar_127 dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 21/09/2006, 11h19
  5. résolution numérique d'une équadif
    Par pepinou dans le forum Mathématiques du supérieur
    Réponses: 6
    Dernier message: 09/02/2006, 22h12