Répondre à la discussion
Affichage des résultats 1 à 6 sur 6

Relation d'équivalence et classes d'équivalence



  1. #1
    gurendan

    Relation d'équivalence et classes d'équivalence

    Bonsoir

    je bloque sur un exercice de L1 où il faut démontrer que R est une relation d'équivalence, et déterminer les classes d'équivalence.

    Voici l’énoncé :

    Soit E un ensemble et soit A une partie de E. On définit dans P(E) la
    relation R en posant, pour tout couple (X, Y ) de parties de [P(E)]² :

    XRY ⇐⇒ A ∩ X = A ∩ Y.

    1. Montrer que R est une relation d’équivalence dans.

    2.Déterminer les classes d'équivalence suivantes : cl(A), cl(Ø), cl(E)

    ......


    je sais qu'il faut démontrer la réflexivité, symétrie et transitivité pour la 1ere question, mais je ne sais pas comment procéder avec la relation donnée.

    Voilà, toute aide est la bienvenue, et merci!

    -----


  2. Publicité
  3. #2
    slivoc

    Re : Relation d'équivalence et classes d'équivalence

    Bonsoir,

    Pour montrer la réfléxivité, tu dois montrer que pour tout x dans P(E), tu as bien xRx. Or tu sais que x est en relation avec y si, et seulement si, x n A = y n A, tu dois donc juste remplacer y par x et regarder si c' est vrai pour tout x dans P(E).
    En fait, les 3 propriétés se déduisent du fait que la relation d' égalité est elle même une relation d' équivalence.

  4. #3
    PlaneteF

    Re : Relation d'équivalence et classes d'équivalence

    Bonsoir,

    Pour la réflexivité :

    La conslusion est alors évidente.

    A toi de jouer pour la suite


    Cordialement
    Dernière modification par PlaneteF ; 13/11/2016 à 16h22.

  5. #4
    gurendan

    Re : Relation d'équivalence et classes d'équivalence

    Merci à vous deux, j'ai un début de réponse!

    voici ce que découle de votre aide:

    réflexif : A ∩ X = A ∩ X --> XRX

    symétrique : A ∩ X = A ∩ Y <=> A ∩ Y = A ∩ X --> XRY => YRX

    transitif : A ∩ X = A ∩ Y et A ∩ Y = A ∩ Z => A ∩ X = A ∩ Z --> XRY et YRZ =>XRZ


    je ne sais pas si c'est exactement ça, mais l'idée y est, où je suis à l'ouest ?

  6. #5
    PlaneteF

    Re : Relation d'équivalence et classes d'équivalence

    On peut toujours chipoter sur la rédaction, mais sinon c'est OK.

    Cdt

  7. A voir en vidéo sur Futura
  8. #6
    gurendan

    Re : Relation d'équivalence et classes d'équivalence

    merci beaucoup, je passe à la prochaine question!

  9. Publicité

Sur le même thème :

Discussions similaires

  1. Propriété des classes d'équivalence de Z/nZ
    Par sasha.v dans le forum Mathématiques du supérieur
    Réponses: 0
    Dernier message: 03/05/2014, 19h34
  2. Relation d'équivalence/classe d'équivalence
    Par descartes092 dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 22/10/2011, 11h27
  3. classes d'equivalence
    Par Darkaust1991 dans le forum Mathématiques du supérieur
    Réponses: 6
    Dernier message: 05/04/2010, 17h52
  4. Relation d'équivalence et classe d'équivalence
    Par sperca dans le forum Mathématiques du supérieur
    Réponses: 14
    Dernier message: 29/10/2007, 20h59
  5. Classes d'équivalence
    Par Coco Beach dans le forum Mathématiques du supérieur
    Réponses: 9
    Dernier message: 10/09/2007, 23h24