Soucis d'integration
Répondre à la discussion
Affichage des résultats 1 à 6 sur 6

Soucis d'integration



  1. #1
    invite1f92914b

    Soucis d'integration


    ------

    Bonsoir à tous,

    Je ne comprends pas pourquoi 1/(1+x^2) est intégrable sur R+, car par domination on peut majorer cette fonction par 1/x^2 mais cette fonction n'est pas intégrable en 0...
    C'est sûrement une erreur de compréhension de ma part, mais si vous pouviez m'éclaircir (comme souvent),ça m'aiderait beaucoup !

    Ps : j'avais pensé à procéder par dès équivalence, en posant : pour x=0 ma fonction est intégrable et pour x~+infini la fonction tend vers 0 donc intégrable.

    -----

  2. #2
    invite1f92914b

    Re : Soucis d'integration

    Je viens de m'apercevoir que La primitive de cette intégrale était arctanx mais sans la calculer comment pouvait t'on prouver que cette intégrale était intégrable ?

  3. #3
    invite23cdddab

    Re : Soucis d'integration

    Sur [0,1], ta fonction est entre 0 et 1, donc intégrable sur [0,1] , et entre 1 et +oo, ta fonction est entre 0 et 1/x², donc intégrable sur [1,+oo[

    Donc ta fonction est intégrable sur R+

  4. #4
    invite555888f1

    Re : Soucis d'integration

    1) Si des intégrales définies de f (x) sur [a, b] existent, on dit que f (x) est intégrable sur [a, b]. C'est-à-dire que f (x) est une fonction intégrable sur [a, b].
    Le jugement intégrable de la fonction:
    Théorème 1: Soit f (x) continu sur l'intervalle [a, b], alors f (x) est intégrable sur [a, b].
    Théorème 2: Soit f (x) borné sur l'intervalle [a, b] et il n'y a qu'un nombre fini de discontinuités du premier type, alors f (x) est intégrable sur [a, b].
    Théorème 3: Soit f (x) une borne monotone sur l'intervalle [a, b], alors f (x) est intégrable sur [a, b].

    Donc,puisque f (x)= 1/(1+x^2) est continu sur R+, il est intégrable.

    2) On suppose x=tan(t), et puis,∫1/(1+x^2)dx=∫[sec(t)]^(-2)d(tant)=∫dt=t+c=arctanx+C
    On peut le memoriser simplement.

  5. A voir en vidéo sur Futura
  6. #5
    invite184b87fd

    Re : Soucis d'integration

    Petite remarque sur ce qu'a dit Fei CHEN.

    Il faut que la fonction soit continue sur un ensemble borné! Donc le théorème ne s'applique pas comme tu voudrais.

    Par exemple la fonction identité n'est pas intégrable sur R+, bien qu'étant continue.

    Cordialement

  7. #6
    invite1f92914b

    Re : Soucis d'integration

    Merci à vous trois pour vos explications, c'est bien plus clair pour moi à présent.

    Tres bonne soirée et bon week-end !

Discussions similaires

  1. Intégration avec des mesures et intégration avec des formes différentielles
    Par invite69ee30f1 dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 09/03/2015, 20h59
  2. Déplacement de l'élement d'integration dans une intégration
    Par invite00c17237 dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 26/01/2014, 23h22
  3. Soucis en intégration :
    Par invitecc2a5165 dans le forum Mathématiques du supérieur
    Réponses: 0
    Dernier message: 30/11/2008, 18h29
  4. soucis MMS
    Par invitece1147ec dans le forum Électronique
    Réponses: 4
    Dernier message: 01/04/2007, 15h13
  5. Soucis Tv thomson chassis ICC20 (double soucis) code err??
    Par invitefc4774fc dans le forum Dépannage
    Réponses: 6
    Dernier message: 03/03/2007, 16h23