Répondre à la discussion
Affichage des résultats 1 à 6 sur 6

produit scalaire... trouvez l'erreur !!



  1. #1
    pepinou

    Question produit scalaire... trouvez l'erreur !!


    ------

    Bonjour à tous !

    Voici donc un petit problème face auquel je me trouve et qui va bientôt me couter tous les cheveux de la tête... je vois pas où est l'erreur !!

    J'ai donc un produit scalaire, défini sur E x E, E étant un R-espace vectoriel de dimension 3, dont voici la matrice :

    1 1 1
    1 5 1
    1 1 2

    Ce qui me donne la forme quadratique:

    q(u) = x^2 + 5y^2 + 2z^2 + 2xy + 2xz + 2yz

    Je réduis cette forme en combinaison linéaire de carrés (par Gauss ) et je trouve :

    q(u) = (x + y + z)^2 + 4y^2 + z^2

    Comme je suis consciencieux je vérifie que j'ai bien fait un changement de base. Je trouve donc comme matrice de passage (enfin je crois) :

    1 -1 -1
    0 1 0
    0 0 1

    Le déterminant est égal à 1, donc ma matrice est inversible, il s'agissait effectivement d'un changement de base. Je trouve donc que ma matrice est diagonale dans la base :

    (1, 0, 0) , (0, 1, 0) , (-1, 0, 1)
    (là plus sur du tout.. à confirmer)

    Or cette base n'est pas orthogonale pour mon produit scalaire !!!!! Et 1 et 4 ne sont pas valeurs propres de ma matrice de départ !!

    Au secours !! Je ne vois vraiment pas où est l'erreur... Merci d'avance !!

    -----

  2. Publicité
  3. 📣 Nouveau projet éditorial de Futura
    🔥🧠 Le Mag Futura est lancé, découvrez notre 1er magazine papier

    Une belle revue de plus de 200 pages et 4 dossiers scientifiques pour tout comprendre à la science qui fera le futur. Nous avons besoin de vous 🙏 pour nous aider à le lancer...

    👉 Je découvre le projet

    Quatre questions à explorer en 2022 :
    → Quels mystères nous cache encore la Lune 🌙 ?
    → Pourra-t-on bientôt tout guérir grâce aux gènes 👩‍⚕️?
    → Comment nourrir le monde sans le détruire 🌍 ?
    → L’intelligence artificielle peut-elle devenir vraiment intelligente 🤖 ?
  4. #2
    pepinou

    Re : produit scalaire... trouvez l'erreur !!

    Bon je sais pas pourquoi j'ai écrit que 1 et 4 n'étaient pas valeurs propres, elles ne le sont pas mais il n'y a pas de raison qu'elles le soient..

  5. #3
    folky

    Re : produit scalaire... trouvez l'erreur !!

    pourquoi tu veux quelle soit orthogonale ta base ?
    quand tu diagonalises une matrice la base d'arrivée n'est pas forcément orthogonale.
    Ceci étant l'algèbre linéaire c'est pas mon truc, mais je crois pas te dire de betise

  6. #4
    pepinou

    Re : produit scalaire... trouvez l'erreur !!

    il me semble que si puisque la matrice de ma forme quadratique est diagonale dans ma nouvelle base, c'est :

    1 0 0
    0 4 0
    0 0 1

    ainsi f(ei,ej)=0 si i différent de j... donc elle devrait être orthogonale il me semble... mais peut-etre que je me trompe

  7. A voir en vidéo sur Futura
  8. #5
    folky

    Re : produit scalaire... trouvez l'erreur !!

    la diagonalisation ne se fait pas automatiquement dans une base orthonormale, j'en suis à peut pres certains

  9. #6
    lloicus

    Re : produit scalaire... trouvez l'erreur !!

    je crois que tu confond deux méthode de diagonalisation!

    1ere méthode : la méthode de completion des carée (comme tu l'as fait), ca te donne une matrice de changement de base P

    tq ta forme quadratique q(x) sois congruante a la forme quadratique q'(x') via le changement de variable
    x' = Px

    donc maintenant tu a q(x) = q'(Px)

    comme q(x) = xtAx
    et q'(x') = x'tDx' = (Px)tD(Px) = xtPtDPx
    donc tu trouve que A = PtDP où D est une matrice diagonale

    ta matrice D est dans une base tout a fait quelqu'onque (ni orthogonal, ni normée)
    par contre, la loi d'inertie de silvester te garanti, que le nombre d'élément diagonaux positif de D est égal au nombre de valeur propre positive, idem pour les negatif, et pour les nulles!, les deux matrices ont meme déterminant (a confirmé), et meme rang évidement!

    2eme méthode, la diagonalisation (via le thm spectrale)
    comme ta matrice est symétrique, le thm spectrale ta garanti que ta matrice est diagonale dans une base Orthonormée des valeurs propres, et que les element diagonaux serons els valeurs propres associé a ces vecteurs!

    il existe donc un changement de repere Q (constitué des vecteur propre Normée mis en colonne)
    tq Q-1AQ sois diagonale, et constitué des valeurs propres!

    voila, j'espere avoir répondu a ta question

  10. Publicité

Discussions similaires

  1. Produit scalaire
    Par Bleyblue dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 10/11/2007, 17h04
  2. produit scalaire
    Par sonia06 dans le forum Mathématiques du collège et du lycée
    Réponses: 3
    Dernier message: 28/01/2007, 14h48
  3. Produit scalaire !! :S
    Par monkey dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 19/01/2006, 22h14
  4. Produit scalaire
    Par snyfir dans le forum Mathématiques du supérieur
    Réponses: 33
    Dernier message: 30/11/2005, 16h50
  5. Produit scalaire
    Par cedric dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 09/10/2004, 14h33