Répondre à la discussion
Affichage des résultats 1 à 8 sur 8

Stern et gerlach et matrices de Pauli



  1. #1
    minkow

    Stern et gerlach et matrices de Pauli


    ------

    Bonjour,
    on nous a decris l'expérience de Stern et Gerlach dans le cas d'un champ magnértique selon l'axe des Z. On a donc obtenu de manière logique la matrice Sz. Cependant, on nous a demandé d'admettre les matrices Sx et Sy. Quelqu'un pourrait-il nous expliquer d'où elles sortent

    merci d'avance

    Cécile

    -----

  2. Publicité
  3. #2
    Gwyddon

    Re : Stern et gerlach et matrices de Pauli

    Tu peux les déterminer à partir des relations de commutations sur les composantes des moments cinétiques

    Rappel :



    Ce qui donne, pour les matrices de Pauli :

    A quitté FuturaSciences. Merci de ne PAS me contacter par MP.

  4. #3
    humanino

    Re : Stern et gerlach et matrices de Pauli

    Bonjour,

    Sais-tu ce qu'est le groupe SU(2) ? C'est le groupe des matrices 2 par 2 complexes unitaires de déterminant 1. C'est un groupe de Lie, dont les matrices Pauli sont les générateurs. Fondamentalement, l'origine du spin vient du lien qui existe entre SU(2) et le groupe des rotations de notre espace ordinaire, SO(3).

    Plus prosaïquement, tu cherches 4 matrices linéairement indépendantes telles que n'importe quelle matrice de SU(2) puisse s'écrire sous la forme . On peut voir que les matrices de Pauli doivent donc etre hermitiennes, avoir un déterminant égal à -1 et une trace nulle. A partir de là, il est "facile" de les retrouver.

    edit croisement !
    "Puisque toute ces choses nous depassent, feignons de les avoir organisees"

  5. #4
    Gwyddon

    Re : Stern et gerlach et matrices de Pauli

    C'est fort joli humanino, mais c'est un peu le marteau-piqueur pour écraser la mouche


    On peut rajouter cependant à ton intervention que le lien SU(2) / SO(3) se voit à travers les spineurs
    A quitté FuturaSciences. Merci de ne PAS me contacter par MP.

  6. #5
    humanino

    Re : Stern et gerlach et matrices de Pauli

    Citation Envoyé par Gwyddon Voir le message
    C'est fort joli humanino, mais c'est un peu le marteau-piqueur pour écraser la mouche
    Oui, je suis d'accord
    On peut rajouter cependant à ton intervention que le lien SU(2) / SO(3) se voit à travers les spineurs
    Le bouquin de Penrose et Rindler, "Spinors and Space-Time" (Cambridge Monographs on Mathematical Physics) est pour moi un sommet en la matière. Le questionnement sur la structure même de l'espace-temps (par exemple le fait que l'on ne peut définir de façon invariante un point que comme l'intersection de deux rayons lumineux, et que donc les "points" ne peuvent etre fondamentaux, ou encore le rôle de la sphère d'observation représentée comme une sphère de Riemann) me paraît très profonde. L'utilité des spineurs et des twisteurs en relativité générale et dans les théorie de yang-Mills, qui simplifient grandement les calculs, me trouble au plus au point. Je me dis souvent que c'est le bon formalisme. Il est adopté par Siegel dans son bouquin (gratuit !) "Fields"

    Ne manquez pas de visiter la page de Warren Siegel ! Elle est géniale (tout comme lui)
    "Puisque toute ces choses nous depassent, feignons de les avoir organisees"

  7. A voir en vidéo sur Futura
  8. #6
    forgane

    Re : Stern et gerlach et matrices de Pauli

    Bonjour
    je me joins à Minkow pour cette question.

    Citation Envoyé par Gwyddon Voir le message
    Tu peux les déterminer à partir des relations de commutations sur les composantes des moments cinétiques
    Le problème c'est que en cours, on a obtenu ces relations après avoir défini les matrices de Pauli !!

    Quelqu'un pourrait il expliquer "rapidement" ce qu'est un spineur et pourquoi cela fait le lien entre SU(2) / SO(3) ?Pourquoi et comment ce lien existe-t-il, quel est son intêret ?

    N'y a-t'il pas un moyen de retrouver ces matrices (Sz est triviale mais les autres ....) de manière qualitative les matrices de Pauli (en raisonnant sur le Stern et Gerlach)?

    Merci d'avance
    Dernière modification par Gwyddon ; 20/10/2006 à 18h12.

  9. Publicité
  10. #7
    humanino

    Re : Stern et gerlach et matrices de Pauli

    Bonjour,

    je me souviens que nous avions commencé une discussion portant sur les définitions ce ces objets. J'avais un peu quitté le navire à l'époque (j'était trop pris à ce moment, et d'ailleurs ça va être dur pour moi de consacrer plus 10 minutes à un message en ce moment...). Je ne crois pas que quelqu'un s'était aventurer à parler des twisteurs mais de toute façon il n'y a presque jamais de discussion à leur sujet sur ce forum, c'est peu trop technique. En ce qui concerne les spineurs, il y a des élements interessants.

    voir cette discussion

    En très très schématique, un spineur c'est la racine carré d'un vecteur
    "Puisque toute ces choses nous depassent, feignons de les avoir organisees"

  11. #8
    humanino

    Re : Stern et gerlach et matrices de Pauli

    Voilà, il y avait aussi cette discussion
    "Puisque toute ces choses nous depassent, feignons de les avoir organisees"

Sur le même thème :

Discussions similaires

  1. Actu - Posez vos questions à Axel Kahn et Jacques Stern !
    Par RSSBot dans le forum Commentez les actus, dossiers et définitions
    Réponses: 10
    Dernier message: 12/12/2007, 15h05
  2. Eq. Dirac -> Eq. Pauli
    Par isozv dans le forum Physique
    Réponses: 0
    Dernier message: 10/10/2007, 12h59
  3. Principe de Pauli
    Par cypher_2 dans le forum Chimie
    Réponses: 5
    Dernier message: 05/10/2007, 21h23
  4. Jacques Stern : la science du secret sous les feux de la rampe
    Par RSSBot dans le forum Commentez les actus, dossiers et définitions
    Réponses: 0
    Dernier message: 08/10/2006, 15h40
  5. experience de stern gerlach pour le chrome
    Par Urian dans le forum Physique
    Réponses: 6
    Dernier message: 15/11/2003, 17h35