Répondre à la discussion
Affichage des résultats 1 à 27 sur 27

Représentation de la courbure de l'espace-temps




  1. #1
    EspritTordu

    Représentation de la courbure de l'espace-temps

    Bonjour,

    Peut-on faire une représentation à une dimension de la courbure de l'univers introduit par la relativité générale de manière à tracer une courbe ponctuée par une ou plusieurs masses?

    Merci d'avance.

    -----


  2. Publicité
  3. #2
    Ledescat

    Re : Représentation de la courbure de l'espace-temps

    Bonjour.

    Citation Envoyé par EspritTordu Voir le message
    de manière à tracer une courbe ponctuée par une ou plusieurs masses?
    Ce serait de la dimension 2 non ?
    Cogito ergo sum.

  4. #3
    obi76

    Re : Représentation de la courbure de l'espace-temps

    Si on peut on 2 on peut en 1...


  5. #4
    Ledescat

    Re : Représentation de la courbure de l'espace-temps

    Citation Envoyé par obi76 Voir le message
    Si on peut on 2 on peut en 1...
    Oui mais une courbe 1D...
    Cogito ergo sum.

  6. #5
    obi76

    Re : Représentation de la courbure de l'espace-temps

    Ben de toutes façons en 3D représenter la courbure je vois pas comment, en 2D c'est une nappe et en 1D c'est une courbe...

  7. A voir en vidéo sur Futura
  8. #6
    bschaeffer

    Re : Représentation de la courbure de l'espace-temps

    Citation Envoyé par obi76 Voir le message
    Si on peut on 2 on peut en 1...
    En 1D, la courbure de Gauss est toujours nulle car la courbure de Gauss est le produit des courbures principales. Comme il n'y en a qu'une en 1D, l'autre est inexistante et, donc nulle.
    En 2D, d'après les équations d'Einstein, la courbure de Gauss l'est aussi. La surface correspondante est plate et peut être un plan, un cône, un cylindre, la métrique de Minkowski… Il n'y a alors qu'une équation d'Einstein qui est, au moins pour les champs faibles, l'équation de Laplace.
    En 3D et au-delà c'est le tenseur de Ricci qui est nul. Le tenseur de Riemann et la courbure de Gauss ne sont alors pas obligatoirement nuls.
    Ne recevoir aucune chose pour vraie que je ne la connusse être telle. Descartes (abrégé)

  9. #7
    obi76

    Re : Représentation de la courbure de l'espace-temps

    Il sagit bien de la représentation en 2D de la contraction de l'E.T. non, c'est une nappe ou tu as les X, les Y et la contraction en Z, me trompais-je ?


    http://fr.wikipedia.org/wiki/Image:S..._curvature.png

  10. Publicité
  11. #8
    EspritTordu

    Re : Représentation de la courbure de l'espace-temps

    Une courbe est une géométrie en 2D effectivement mais appliquée à l'exemple de la relativité, on considère qu'une dimension représente une dimension spatiale dans la relativité et la seconde dimension de la courbe, illustre la courbure de l'espace-temps, en parlant d'une dimension pour la courbe, j'allais un peu vite!

    Maintenant après le post de bschaeffer, je suis perplexe (en fait je suis perdu...). Parce qu'il existe, comme le fait remarquer Obi76, des représentations 2D de la relativité en truchant en usant l'effet de l'image de la pesanteur d'une boule sur une toile.

  12. #9
    bschaeffer

    Re : Représentation de la courbure de l'espace-temps

    Citation Envoyé par EspritTordu Voir le message
    Une courbe est une géométrie en 2D effectivement mais appliquée à l'exemple de la relativité, on considère qu'une dimension représente une dimension spatiale dans la relativité et la seconde dimension de la courbe, illustre la courbure de l'espace-temps, en parlant d'une dimension pour la courbe, j'allais un peu vite!

    Maintenant après le post de bschaeffer, je suis perplexe (en fait je suis perdu...). Parce qu'il existe, comme le fait remarquer Obi76, des représentations 2D de la relativité en truchant en usant l'effet de l'image de la pesanteur d'une boule sur une toile.
    On peut aussi représenter la courbure de l'espace-temps en 2D, avec x et ict. On a un plan avec x,y, l'espace de Minkowski avec x et y=ict. Le théorême de Pythagore devient alors


    Ca c'était en relativité restreinte. En relativité générale, le théorême de Pythagore n'est plus vérifié. On doit l'écrire


    Si on ne remplace pas y par ict, le plan devient une surface courbe.
    Cependant, si on applique l'équation d'Einstein dans le vide, elle se réduit, en deux dimensions , à la condition que la courbure de Gauss soit nulle, ce qui n'est plus vrai en quatre dimensions où c'est le tenseur de Ricci qui doit être nul.

    Toutefois, il est intéressant de constater que "courbure nulle" d'une surface revient à écrire l'équation de Laplace en 2D. Elle diverge. Par contre, la solution de l'équation de Laplace en 3D est justement la loi de la gravitation universelle de Newton.
    Ne recevoir aucune chose pour vraie que je ne la connusse être telle. Descartes (abrégé)

  13. #10
    LEPOULPE13

    Re : Représentation de la courbure de l'espace-temps

    bonjour
    je comprends rien à la photo?????
    explication possible svp?
    explication simple si possible (sans aucune équation ni symboles matheux je suis assez imperméable à ce genre d'attaques)

  14. #11
    obi76

    Re : Représentation de la courbure de l'espace-temps

    Hé bien c'est une image symbolisant un espace temps en 2 Dimension (la nappe donc) et son contraction causée par la présence de la Terre, c'est donc une image 3D représentant un espace temps en 2D.

  15. #12
    Codi19
    Invité

    Re : Représentation de la courbure de l'espace-temps

    [IMG]e:\Mes Documents\Mes images\esp Temps.bmp[/IMG]

  16. #13
    Codi19
    Invité

    Re : Représentation de la courbure de l'espace-temps

    Bon Ok ca marche pas alors voila
    Imagine une boite constituée de 2 mirroir face a face entre les deux circul un photon rebondissant d'une face à l'autre ne céssant de faire des allé retour
    _______
    ^
    |
    |p
    _______
    maintenant j'envoi la boite à une vitesse V le photon décrit donc une serie de
    triangle du point de vue d'un observateur statique

    /\ /\
    / \ / \
    / \/ \

    mais dans la boiboite le photon pour lui vas bien à C étrange car l'observateur le voie aussi le photon aller à C impossible les 2 vitesse ne peuvent pas correspondre.
    Le photon voie un distance Lp=Ct parcourue alors que l'observateur voie
    L=Ct et la vient pitagor
    Lp²=L²-D²
    /|Lp=Ct
    / |
    L=Ct / |
    /____| D=Vt vitesse de l'objet vue par l'observateur
    d'ou l'hypothèse de faire varier Lp=Ct'
    on a donc
    (Ct')²=(Ct)² - (Vt)²
    ________
    t'=t\/ 1 - V²


    C'est Ok comme explication

  17. #14
    Codi19
    Invité

    Re : Représentation de la courbure de l'espace-temps

    bon je voie que je peut pas inserrer d'image et en plus que mon dessin en caractère a foiré . désolé

  18. #15
    mamono666

    Re : Représentation de la courbure de l'espace-temps

    une image s'insere en allant dans le mode avancé. Puis en dessous appuyé sur le bouton: Gérer les pieces jointes....
    Out! Out! You, Demons Of Stupidity!!

  19. #16
    Gunman

    Re : Représentation de la courbure de l'espace-temps

    Ou sinon pour les dessins en ASCII, les balises [code] suffisent

  20. #17
    obi76

    Re : Représentation de la courbure de l'espace-temps

    En plus E:\ ça me rappelle un OS qui plante une fois sur 2, donc faut pas espérer des miracles

  21. #18
    Codi19
    Invité

    Re : Représentation de la courbure de l'espace-temps

    Mais non je me suis inscrit au jourd'hui et j'ai pas tout regardé c'est con j'avai
    fait un super dessin bien comme il faut et j'ai pas trouvé comment le mettre.

  22. #19
    EspritTordu

    Re : Représentation de la courbure de l'espace-temps

    Citation Envoyé par bschaeffer Voir le message
    On peut aussi représenter la courbure de l'espace-temps en 2D, avec x et ict. On a un plan avec x,y, l'espace de Minkowski avec x et y=ict. Le théorême de Pythagore devient alors


    Ca c'était en relativité restreinte. En relativité générale, le théorême de Pythagore n'est plus vérifié. On doit l'écrire


    Si on ne remplace pas y par ict, le plan devient une surface courbe.
    Cependant, si on applique l'équation d'Einstein dans le vide, elle se réduit, en deux dimensions , à la condition que la courbure de Gauss soit nulle, ce qui n'est plus vrai en quatre dimensions où c'est le tenseur de Ricci qui doit être nul.

    Toutefois, il est intéressant de constater que "courbure nulle" d'une surface revient à écrire l'équation de Laplace en 2D. Elle diverge. Par contre, la solution de l'équation de Laplace en 3D est justement la loi de la gravitation universelle de Newton.

    Un truc me chiffonne bien que je ne comprends pas tout. En relativité restreinte, l'espace est plat, donc pas de courbure? La courbure entre en compte uniquement lorsqu'on considère l'influence d'une masse sur le "tissu" de l'espace-temps?

  23. #20
    bschaeffer

    Re : Représentation de la courbure de l'espace-temps

    Citation Envoyé par EspritTordu Voir le message
    Un truc me chiffonne bien que je ne comprends pas tout. En relativité restreinte, l'espace est plat, donc pas de courbure? La courbure entre en compte uniquement lorsqu'on considère l'influence d'une masse sur le "tissu" de l'espace-temps?
    L'espace-temps en 2D peut être plat ou courbe.
    Lorsqu'il est plat, ce peut être un plan, un cône, un cylindre ou l'espace pseudo-euclidien de Minkowski.
    Lorsqu'il est courbe c'est une surface courbe de courbure de Gauss non nulle, c'est-à-dire que la surface doit être courbe dans deux directions perpendiculaires. Le cylindre et le cône ont des courbures de Gauss nulles.
    En ce qui concerne l'influence de la masse, il faut distinguer deux cas, celui où la masse est distante, alors les équations d'Einstein ont un second membre nul. On est dans le vide. Cela correspond à l'équation de Laplace.
    A l'intérieur de la matière, comme dans un trou noir, dans la Terre, ou dans l'Univers dans son ensemble, le second membre de l'équation d'Einstein n'est pas nul. En mécanique classique, on appliquerait l'équation de Poisson est la masse spécifique.

    En 2D, l'équation d'Einstein se réduit à écrire que la courbure de Gauss est nulle, mais cela donne l'équation de Laplace dont la solution diverge à l'infini.
    De toutes façons, il faut passer en 4D, une représentation 2D ne peut être qu'une image. Là c'est le tenseur de Ricci qui doit être nul dans le vide. La courbure de Riemann n'est alors plus nulle comme en 2D.
    Ne recevoir aucune chose pour vraie que je ne la connusse être telle. Descartes (abrégé)

  24. #21
    Codi19
    Invité

    Re : Représentation de la courbure de l'espace-temps



    Y a pas de mode avencé seulement repondre ou répondre rapidement
    Images attachées Images attachées

  25. #22
    Codi19
    Invité

    Re : Représentation de la courbure de l'espace-temps


    Ok mais certain l'affichent directement dans un message pas en pièce joint
    C'est nul

  26. #23
    mamono666

    Re : Représentation de la courbure de l'espace-temps

    c'est parce que l'image n'est pas sur une adresse locale, mais sur un serveur http.
    Out! Out! You, Demons Of Stupidity!!

  27. #24
    bschaeffer

    Re : Représentation de la courbure de l'espace-temps

    Citation Envoyé par Codi19 Voir le message


    Y a pas de mode avencé seulement repondre ou répondre rapidement
    Ce n'est pas un espace courbe. C'est la moité de l'expérience de Michelson.
    Ne recevoir aucune chose pour vraie que je ne la connusse être telle. Descartes (abrégé)

  28. #25
    EspritTordu

    Re : Représentation de la courbure de l'espace-temps

    J'avoue je ne comprend pas très bien. Que se passe-t-il pour des masses statiques?

  29. #26
    bschaeffer

    Re : Représentation de la courbure de l'espace-temps

    Citation Envoyé par EspritTordu Voir le message
    J'avoue je ne comprend pas très bien. Que se passe-t-il pour des masses statiques?
    Une masse statique donne un champ de gravitation qui est, d'après la loi de Newton, est en 1/r. Or 1/r est la solution de l'équation de Laplace. D'après Einstein, en 3D, le tenseur de Ricci doit être nul sauf à l'intérieur de l'astre. En 2D, la nullité du tenseur de Ricci implique la nullité du tenseur de Riemann, c'est-à-dire que la surface est plate comme une feuille de papier qu'on déforme, mais pas comme une plaque de caoutchouc. La feuille peut se mettre sous forme de cône de cylindre ou autre, elle reste plate. La plaque de caoutchouc peut se déformer, mais les équations deviennent alors plus compliquées. L'image de la bille sur une plaque de caoutchouc n'est, à ma connaissance, pas justifiée par un calcul; c'est donc une simple image, sans plus.
    Ne recevoir aucune chose pour vraie que je ne la connusse être telle. Descartes (abrégé)

  30. #27
    EspritTordu

    Re : Représentation de la courbure de l'espace-temps

    heu.. C'est donc impossible?

Discussions similaires

  1. courbure de l'espace temps?
    Par arno15 76 dans le forum Astronomie et Astrophysique
    Réponses: 18
    Dernier message: 24/08/2010, 12h22
  2. Courbure de l'espace temps
    Par klemmy dans le forum Astronomie et Astrophysique
    Réponses: 4
    Dernier message: 01/12/2007, 19h33
  3. Courbure de l'espace-temps en RR
    Par DaoLoNg WoNg dans le forum Physique
    Réponses: 9
    Dernier message: 16/02/2007, 10h15
  4. Courbure de l'espace-temps.
    Par anton dans le forum Physique
    Réponses: 1
    Dernier message: 13/01/2007, 08h45
  5. Courbure de l'Espace - Temps
    Par gregoirefalque dans le forum Astronomie et Astrophysique
    Réponses: 12
    Dernier message: 17/11/2005, 14h58