Theoreme de KAM
Répondre à la discussion
Affichage des résultats 1 à 13 sur 13

Theoreme de KAM



  1. #1
    invited9d78a37

    Theoreme de KAM


    ------

    bonjour
    je voudrais trouver des liens ou livres traitant du théoreme de KAM?
    merci d'avance

    -----

  2. #2
    Deedee81

    Re : Theoreme de KAM

    Citation Envoyé par chwebij Voir le message
    je voudrais trouver des liens ou livres traitant du théoreme de KAM?
    Bonjour,

    Dans :
    http://fr.wikipedia.org/wiki/Th%C3%A9or%C3%A8me_KAM
    Tu as plusieurs références.

    Et même (via cela) un article en ligne :
    http://www.ams.org/bull/2004-41-04/S...04-01009-2.pdf
    "Il ne suffit pas d'être persécuté pour être Galilée, encore faut-il avoir raison." (Gould)

  3. #3
    invited9d78a37

    Re : Theoreme de KAM

    merci deedee,
    j'avais noté les liens.
    MAis je cherche des documents plus pédagogiques (est ce possible??)
    par exemple ton document, je suis un peu perdu car déjà en francais j'ai du mal avec ce genre d'article alors en anglais, je nage!
    merci encore

  4. #4
    Deedee81

    Re : Theoreme de KAM

    Bonjour,

    Citation Envoyé par chwebij Voir le message
    j'avais noté les liens.
    Aie, désolé.

    Citation Envoyé par chwebij Voir le message
    MAis je cherche des documents plus pédagogiques (est ce possible??)
    Sur le net, je l'ignore. Je ne suis pas du tout expert de ce domaine. (j'ai juste répondu car j'avais vu que ton message restait sans réponse). Je suis même certain qu'on en parle quelque part dans mes cours... sous forme d'une seule ligne (le théorème KAM montre que blablabla etpicétou)

    Citation Envoyé par chwebij Voir le message
    par exemple ton document, je suis un peu perdu car déjà en francais j'ai du mal avec ce genre d'article alors en anglais, je nage!
    Ce n'est pas "mon" document, sinon il serait en français

    T'as pas quelqu'un pour le traduire ? car je dois t'avouer que 15 pages c'est pas horiblemment long, mais pfffff j'ai pas trop le temps de traduire Désolé.
    "Il ne suffit pas d'être persécuté pour être Galilée, encore faut-il avoir raison." (Gould)

  5. A voir en vidéo sur Futura
  6. #5
    invited9d78a37

    Re : Theoreme de KAM

    j'ai juste répondu car j'avais vu que ton message restait sans réponse
    mais c'est tout à ton honneur

    Ce n'est pas "mon" document, sinon il serait en français
    si on commence à jouer sur les mots...

    T'as pas quelqu'un pour le traduire ? car je dois t'avouer que 15 pages c'est pas horiblemment long, mais pfffff j'ai pas trop le temps de traduire
    au final je pense être capable de le traduire moi même (je ne prend pas mon niveau en anglais comme une fatalité ), c'est juste que j'ai peur que ce document soit un peu trop élevé pour mon niveau. J'ai le niveau L3 en physique.
    enfin je vais arpenter les BU pour voir un peu ce que je peux y trouver
    encore merci

  7. #6
    invite93279690

    Re : Theoreme de KAM

    Citation Envoyé par chwebij Voir le message
    merci deedee,
    j'avais noté les liens.
    MAis je cherche des documents plus pédagogiques (est ce possible??)
    par exemple ton document, je suis un peu perdu car déjà en francais j'ai du mal avec ce genre d'article alors en anglais, je nage!
    merci encore
    C'est pourquoi faire au juste ?
    Si je me souviens bien, le théorème KAM (pour Kolomogorov, Arnold, Moser ça pourra peut être te servir à trouver des liens si tu ne le savais pas) dit que si on a un système qui n'est pas intégrable, au sens de la mécanique hamiltonienne (i.e. on ne peut pas exprimer la solution en termes de variables angle-action) alors il n'est pas forcément chaotique. Il va en fait se développer une sorte de dynamique mixte de telle sorte qu'une partie des conditions initiales va conduire à des orbites ergodiques et chaotiques et d'autre ne le seront pas.
    Pour résumer, l'idée principale est juste que, si le système n'est pas intégrable, alors il va sombrer dans une dynamique mixte "mi-deterministe", "mi-chaotique" mais en aucun cas toutes les orbites ne remplissent de façon dense l'espace des phases offert (contrairement au chaos qu'on imagine en mécanique statistique par exemple).

    P.S: ce n'est pas non plus ma spécialité car je me suis moi aussi un peu arreté devant certains calculs donc si je dis une betise reprenez moi.

  8. #7
    invite8ef897e4

    Re : Theoreme de KAM

    Bonjour,

    j'ai failli repondre deja plusieurs fois, mais je ne dispose pas de reference valable et simple en francais. Si mes souvenirs ne me font pas trop defaut, il doit exister un La Recherche hors serie qui en parle de facon honnete, mais c'est peu etre un peu vieux. J'avais personellement ete confronte a ce sujet lors d'un memoire a l'ecole au sujet de la stabilite des accelerateurs. J'avais trouve ce sujet passionnant, et achete le bouquin de V.Arnold.

    Sinon, pas forcement simple mais en francais, pas trop long, et avec pas mal de references :
    Tores invariants des systèmes dynamiques hamiltoniens

  9. #8
    Deedee81

    Re : Theoreme de KAM

    Bonjour,

    Citation Envoyé par humanino Voir le message
    Si mes souvenirs ne me font pas trop defaut, il doit exister un La Recherche hors serie qui en parle de facon honnete, mais c'est peu etre un peu vieux.
    Je l'ai trouvé, site de larecherche.fr, taper Kam. Article de 2000. Mais l'accès est payant et je ne sais ce que vaut l'article trouvé.
    "Il ne suffit pas d'être persécuté pour être Galilée, encore faut-il avoir raison." (Gould)

  10. #9
    invite8ef897e4

    Re : Theoreme de KAM

    Citation Envoyé par Deedee81 Voir le message
    Je l'ai trouvé, site de larecherche.fr, taper Kam. Article de 2000. Mais l'accès est payant et je ne sais ce que vaut l'article trouvé.
    Vous pouvez aussi chercher dans une bibliotheque locale, genre BU, abonnee a La Recherche.

  11. #10
    invite8ef897e4

    Re : Theoreme de KAM

    En fait, j'ai regarde sur le site. J'ai le volume en question et ce n'est pas ca. Desole pour la confusion.

    Je crois plutot que c'est dans l'article donne en reference sur wikipedia (en francais) :
    Barbara Burke-Hubbard & John Hubbard, « Loi et ordre dans l'univers : le théorème KAM », Pour La Science 188 (Juin 1993) 74-82.

  12. #11
    Deedee81

    Re : Theoreme de KAM

    Citation Envoyé par humanino Voir le message
    Barbara Burke-Hubbard & John Hubbard, « Loi et ordre dans l'univers : le théorème KAM », Pour La Science 188 (Juin 1993) 74-82.
    A j'avais pas regardé sur le bon site

    Le pire c'est que je lis les deux revues depuis plus longtemps que ça.... et je ne me souviens pas de ces articles. Grave de chez grave
    "Il ne suffit pas d'être persécuté pour être Galilée, encore faut-il avoir raison." (Gould)

  13. #12
    invited9d78a37

    Re : Theoreme de KAM

    Citation Envoyé par gatsu Voir le message
    C'est pourquoi faire au juste ?
    si je répond par pur curiosité, j'ai juste?

    sinon ton explication conforte l'idée dont je m'étais faite de ce théorème.

    je suis étudiant en méca flu et on a eu un TP sur les phénomènes chaotiques au travers des cellules de Rayleigh-Bénard (petite photo mystère récente )

    en fait je suis aussi intéressé par la physique statistique et la physique des fluides, les hypothèses d'ergodicité...etc
    ALors de fil en anguille je suis tombé sur ce théorème. Il m'a intrigué mais je comprend que je dois approfondir mes bases sur plusieurs thèmes comme les systèmes intégrables, la méca hamiltonienne dont les "variables angle-action".

    petite question:en fait ca conforte l'idée de l'hypothèse d'ergodicité faible? d'après wikipedia:
    Le point représentatif d'un système hamiltonien invariant par translation dans le temps passe au cours du temps aussi près que l'on veut de chaque point de l'hypersurface d'énergie constante.
    après tout dépend de ce qu'on entend par "aussi près que l'on veut ".

    en tout cas merci pour vos réponse, je pense que je vais d'abord aller voir du côté de Poincarré avant d'attaquer KAM, et j'ai récuperer des cours de Manneville sur le chaos
    http://cel.archives-ouvertes.fr/inde...2941&version=1
    http://cel.archives-ouvertes.fr/inde...2962&version=1
    on verra ce que je peux tirer avec mes acquis
    je suis clairement conscient que je tape sans doute trop haut mais qui ne tente rien

  14. #13
    invite93279690

    Re : Theoreme de KAM

    Citation Envoyé par chwebij Voir le message
    si je répond par pur curiosité, j'ai juste?
    Oui .


    en fait je suis aussi intéressé par la physique statistique et la physique des fluides, les hypothèses d'ergodicité...etc
    Je suis également très très interessé par toutes ces choses là.

    ALors de fil en anguille je suis tombé sur ce théorème.
    .
    Effectivement lorsqu'on s'interesse aux fondements de la méca stat. d'équilibre (classique) on remarque que l'hypothèse ergodique était un argument béton pour justifier l'utilisation de la statistique d'ensembles par exemple. Mais à cause du théorème KAM on a compris que ce n'était possible que pour un nombre de systèmes très restreint et on a essayé de trouver d'autres arguments semblables mais moins contraignants comme l'hypothèse de quasi-ergodicité (ou ergodicité faible) qui ne marche finalement pas....
    Au final, il me semble que le problème n'est toujours pas règlé de nos jours (ne serait qu'à l'équilibre) même si ça avance dans la bonne direction : Sinai a par exemple montré aux début des années 2000 qu'un gaz de sphères dures vérifiait le théorème ergodique de Birkhoff (la définition contemporaine de l'ergodicité) et que donc ses microétats étaient equiprobables.

    après tout dépend de ce qu'on entend par "aussi près que l'on veut ".
    Là c'est vraiment au sens mathématique du terme normalement, en tout cas dans l'énoncé.
    en tout cas merci pour vos réponse, je pense que je vais d'abord aller voir du côté de Poincarré avant d'attaquer KAM, et j'ai récuperer des cours de Manneville sur le chaos
    http://cel.archives-ouvertes.fr/inde...2941&version=1
    http://cel.archives-ouvertes.fr/inde...2962&version=1
    on verra ce que je peux tirer avec mes acquis
    je suis clairement conscient que je tape sans doute trop haut mais qui ne tente rien
    Bon courage, moi aussi il faut que je m'y remette très sérieusement .

Discussions similaires

  1. Théorème
    Par inviteba93d44f dans le forum Mathématiques du supérieur
    Réponses: 16
    Dernier message: 16/12/2007, 20h13
  2. théorème
    Par invitedcb8d9bb dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 25/04/2007, 21h20
  3. nombre d'or/Tore de Kam
    Par invite8e3a470d dans le forum Physique
    Réponses: 11
    Dernier message: 28/03/2005, 14h06