Tu parles Ça me fait doucement marrer ces histoires de renormalisations pour se sortir d'intégrales méchamment divergentes
Je préfère retrouver le résultat via les forces de vdW : c'est de l'électrostatique :P
Je suis assez d'accord, on m'a presenté ce calcul au moins 3 fois, ça m'a toujours semblé aussi sale a chaque fois
Tiens justement j'ai aussi entendu parler de cette histoire de force de van der wall, et à ce propos, est-ce qu'on peut bien expliquer la force ressentie par les plaques par les forces de VdV? Dans ce cas là ça pose un problème, car si fluctuations il y a, on devrait avoir EN PLUS une force en plus, ou alors les deux sont les mêmes, auquel cas ça doit être dur à concilier, ou alors l'électrostatique n'existe plus réellement à cette échelle, ou alors ... il n'y a pas de fluctuations.
Bon je relance même si ça n'a pas l'air d'intéresser grand monde, le sujet étant peut-être trop sensationaliste. J'ai du mal à concevoir que les forces de van der waals puissent avoir le même effet sur des plaques infinies. Je croyais que les forces de van der waals étaient dues à "l'induction" par un dipole (par exemple un atome) d'un autre dipole sur un autre atome. Les deux dipoles électriques s'attirant à cause de la différence de champ due à la distance entre chaque charge de chaque dipole. donc il faut que le champ de la charge la plus lointaine soit plus faible, c'est le cas pour des atomes isolés à cause de la divergence du champ électrique, mais pour des plaques infinies, normalement ça ne doit pas du tout exister, puisque toutes les pertes sont compensées, à moins d'avoir des fluctuations locales, et encore.
Par contre je me demande toujours comment des modes propres peuvent avoir le temps de s'établir et pire de NE PAS s'établir dans l'effet casimir vu la durée de vie supposée des photons...
Encore pire j'ai fait une petite simulation d'une onde électromagnétique classique dont la longueur d'onde est trop grande pour une cavité. Après un rétablissement du "non champ" au milieu de la cavité on continue d'avoir sur les parois une force de pression de radiation. (la source continue d'émettre mais aucun champ électrique ne s'établit dans la cavité, pourtant il y a une force) je l'ai faite avec les applets du site falstad.com encore une fois, que décidemment j'adore.
tout dépend ce que tu entends par "même effet", pour deux plaques infinies le potentiel d'interaction ne possède plus la même loi de puissance, par contre il ne peut y avoir anihilation pour les interactions dipôle induit-dipôle induit du fait du caractère local des interactions...Bon je relance même si ça n'a pas l'air d'intéresser grand monde, le sujet étant peut-être trop sensationaliste. J'ai du mal à concevoir que les forces de van der waals puissent avoir le même effet sur des plaques infinies. Je croyais que les forces de van der waals étaient dues à "l'induction" par un dipole (par exemple un atome) d'un autre dipole sur un autre atome. Les deux dipoles électriques s'attirant à cause de la différence de champ due à la distance entre chaque charge de chaque dipole. donc il faut que le champ de la charge la plus lointaine soit plus faible, c'est le cas pour des atomes isolés à cause de la divergence du champ électrique, mais pour des plaques infinies, normalement ça ne doit pas du tout exister, puisque toutes les pertes sont compensées, à moins d'avoir des fluctuations locales, et encore.
désolé je suis un peu dur de la comprenette, il y a quand même force de van der walls? Faut vraiment être très près alors non?
Par même effet j'entend que les forces de VDW agissant entre 2 plaques peuvent se calculer, l'effet casimir également, et on dispose de constats expérimantaux. Les résultats correspondent ils plus à un des deux calculs, si non, est-ce car les deux donnent le même résultat ou est-ce que les deux agissent en même temps?
donc quand on résoud l'équation de shroendinger pour un atome hydrogénoïde, le potentiel, c'est un artefact pur et dur? c'est une méthode batarde? il n'y aurait que des TQC?..mouais, vu comme on les introduit je trouve ça bizarre.
je dévie un peu, il faut que je retrouve le texte dans wiki, on dit qu'en réalité (sur wikipédia hein)un atome rayonne quand même réellement, mais que globalement il n'y a pas de pertes d'énergie, (peut être à cause de l'absorption d'énergie des fluctuations du vide je sais plus), bon ce dont je me souviens à coup sûr c'est qu'il est écrit que l'atome rayonne quand même. C'est peut-être à photon, ou à orbitale je ne sais plus. Est-ce qu'il ne faudrait pas prendre en compte l'énergie rayonnée dans le hamiltonien pour être rigoureux?
Bah oui. Parce que tous les trucs un peu subtils, genre interaction spin-orbite, Lamb shift, c'est des charges qui bougent.
Dans electrodynamique, y a dynamique
Et puis, ça me semble juste évident… J'aimerais bien qu'on me dise où dans l'univers je peux trouver deux charges électriques totalement immobiles l'une par rapport à l'autre
justement c'est traité perturbativement, on garde l'interaction coulombienne quand même, j'aurais tendance à dire que c'est le contraire, le reste c'est du détail, l'électrodynamique, c'est ce que peut faire l'électrostatique dans un univers dynamique, et bien il se débrouille, il se rattrape (en envoyant des ondes par exemple).