Equation de Dirac
Répondre à la discussion
Affichage des résultats 1 à 8 sur 8

Equation de Dirac



  1. #1
    tpscience

    Equation de Dirac


    ------

    Bonjour à tous,

    Je suis actuellement en train de travailler sur l'équation de Dirac, or il se trouve que le spin de l'électron n'apparaît pas naturellement.

    J'aurais aimé en savoir en peu plus et surtout comment serait-il possible de le faire apparaîre.

    Merci beaucoup par avance

    -----

  2. #2
    invite0fa82544

    Re : Equation de Dirac

    Citation Envoyé par tpscience Voir le message
    Bonjour à tous,

    Je suis actuellement en train de travailler sur l'équation de Dirac, or il se trouve que le spin de l'électron n'apparaît pas naturellement.

    J'aurais aimé en savoir en peu plus et surtout comment serait-il possible de le faire apparaîre.

    Merci beaucoup par avance
    L'apparition du spin de l'électron dans l'équation de Dirac est pourtant fort naturelle et spontanée.
    D'un autre côté, on sait grâce à Wigner d'où vient précisément le spin : du groupe des rotations (les spineurs ont été introduits par Elie Cartan en 1910). C'est parce que l'invariance de Lorentz ramasse tout le monde que le spin "sort" de l'équation de Dirac et que l'on a cru, un bref moment, qu'il était d'essence relativiste.

  3. #3
    invitedbd9bdc3

    Re : Equation de Dirac

    ouais, enfin naturellement, faut quand meme se taper la limite non-relativiste de l'electron couplé à un potentiel vecteur, c'est pas comme si il etait present comme un terme µB dans l'equation de Schrodinger.

    Le calcul est surement fait sur sciences.ch

  4. #4
    invite0fa82544

    Re : Equation de Dirac

    Citation Envoyé par Thwarn Voir le message
    ouais, enfin naturellement, faut quand meme se taper la limite non-relativiste de l'electron couplé à un potentiel vecteur, ....
    Non, non.
    On trouve le spin dans la version purement relativiste en mettant en évidence le moment cinétique total (qui doit être une constante du mouvement dans un champ central, ce que n'est pas le moment purement orbital).
    La limite non-relativiste, à ce stade, n'est d'aucune utilité (mais l'est pour d'autres questions !)

  5. A voir en vidéo sur Futura
  6. #5
    tpscience

    Re : Equation de Dirac

    Bonjour et merci à vous deux,

    Toutefois je serais plus de l'avis de Thwarn.
    On part de l'équation de Klein-Gordon puis on quantifie. On obtient une forme Lorentz covariant.
    On considère le courant probabiliste qui satisfait l'équation de continuité :
    Puis la densité probabiliste : .
    Si on considère des solutions en onde plane, due à la possibilité de l'énergie négative on tombe sur un cas où la densité est négative, chose qui est biensûr impossible.

    On voit donc que le spin n'apparait pas naturellement !

  7. #6
    invitea29d1598

    Re : Equation de Dirac

    Bonjour,

    Citation Envoyé par tpscience Voir le message
    On voit donc que le spin n'apparait pas naturellement !
    bah oui car tout ceci n'a rien à voir avec l'équation de Dirac

  8. #7
    invitedbd9bdc3

    Re : Equation de Dirac

    Citation Envoyé par Armen92 Voir le message
    Non, non.
    On trouve le spin dans la version purement relativiste en mettant en évidence le moment cinétique total (qui doit être une constante du mouvement dans un champ central, ce que n'est pas le moment purement orbital).
    La limite non-relativiste, à ce stade, n'est d'aucune utilité (mais l'est pour d'autres questions !)
    tout à fait d'accord avec toi, on peut faire apparaitre l'operateur spin dans l'ED.
    Mais pour retrouver le terme habituel (genre equation de schodinger) pour bien se convaincre que l'on retrouve le spin "non relativiste", il y a quelques calculs (et je supposais que c'etait ce que chercher tpscience).

  9. #8
    tpscience

    Re : Equation de Dirac

    Citation Envoyé par Rincevent Voir le message
    bah oui car tout ceci n'a rien à voir avec l'équation de Dirac
    Effectivement après on arrive à l'équation sous forme matricielle :


    Où on tombe avec généralisation de l'équation de KG sur l'équation de D sous forme covariante :



    est la matrice identité.

    Faudrait-il pour faire apparaître ce fameux spin imposer le système au repos ()...?

Discussions similaires

  1. Equation de Schrödinger - équation de Dirac.
    Par invited776e97c dans le forum Physique
    Réponses: 5
    Dernier message: 05/04/2009, 12h39
  2. Equation de Dirac
    Par invite7753e15a dans le forum Mathématiques du supérieur
    Réponses: 15
    Dernier message: 12/08/2007, 10h04
  3. equation de dirac Help
    Par inviteb2a3c145 dans le forum Physique
    Réponses: 7
    Dernier message: 16/07/2005, 19h37
  4. Equation de Dirac
    Par inviteccb09896 dans le forum Physique
    Réponses: 22
    Dernier message: 06/09/2004, 19h41
  5. équation de dirac Help!
    Par invite285ab944 dans le forum Physique
    Réponses: 11
    Dernier message: 02/11/2003, 02h41