Oscillation harmonique simple d'un système masse-ressort.
Répondre à la discussion
Affichage des résultats 1 à 9 sur 9

Oscillation harmonique simple d'un système masse-ressort.



  1. #1
    invitefbc652a5

    Oscillation harmonique simple d'un système masse-ressort.


    ------

    Bonjour, je me demandais d'où vient la relation ω= √(k/m).
    Si on part de cela: T = 2π√(k/m), ω=2πf et T = 1/f
    Donc, 1/f = 2π√(k/m)
    1/f/2π = √(k/m)
    1/2πf = √(k/m)
    1/ ω = √(k/m)
    ω-1 = √(k/m)

    Cela ne fonctionne pas.

    -----

  2. #2
    stefjm

    Re : Oscillation harmonique simple d'un système masse-ressort.

    Citation Envoyé par Experimentum Voir le message
    Bonjour, je me demandais d'où vient la relation ω= √(k/m).
    Si on part de cela: T = 2π√(k/m), ω=2πf et T = 1/f
    Comme vous l'avez très bien conclu, l'une des deux est fausse.
    Moi ignare et moi pas comprendre langage avec «hasard», «réalité» et «existe».

  3. #3
    albanxiii
    Modérateur

    Re : Oscillation harmonique simple d'un système masse-ressort.

    Bonjour,

    Ca vient surtout de l'équation différentielle du mouvement et de sa résolution.

    @+
    Not only is it not right, it's not even wrong!

  4. #4
    stefjm

    Re : Oscillation harmonique simple d'un système masse-ressort.

    ou d'une analyse dimensionnelle.
    Moi ignare et moi pas comprendre langage avec «hasard», «réalité» et «existe».

  5. A voir en vidéo sur Futura
  6. #5
    albanxiii
    Modérateur

    Re : Oscillation harmonique simple d'un système masse-ressort.

    Re,

    Pour commencer je conseillerais à Experimentum d'aller lire http://forums.futura-sciences.com/ph...ier-cycle.html

    Et puis l'analyse dimensionnelle permet-elle de trouver la raideur équivalente de ressorts en série ou en parallèle ?

    Je sais que vous êtes très "versé" (sans aucune connotation négative ou péjorative de ma part) dans l'analyse dimensionnelle, cela n'est pas mon cas, et je ne suis pas du tout de votre avis sur le sujet. Et je pense que pour un apprenti physicien, il vaut mieux maîtriser les bases avant de se lancer dans des sujets plus marginaux.

    Par contre, je suis fan de votre signature

    @+
    Not only is it not right, it's not even wrong!

  7. #6
    stefjm

    Re : Oscillation harmonique simple d'un système masse-ressort.

    Citation Envoyé par albanxiii Voir le message
    Et puis l'analyse dimensionnelle permet-elle de trouver la raideur équivalente de ressorts en série ou en parallèle ?
    Ce n'est pas son but.
    En revanche, essayer de généraliser la notion de série (moyenne arithmétique), parallèle (moyenne harmonique), interaction (moyenne géométrique) à toutes les grandeurs physiques est intéressant. (masse, longueur, temps, vitesse, etc...)

    Citation Envoyé par albanxiii Voir le message
    Je sais que vous êtes très "versé" (sans aucune connotation négative ou péjorative de ma part) dans l'analyse dimensionnelle, cela n'est pas mon cas, et je ne suis pas du tout de votre avis sur le sujet. Et je pense que pour un apprenti physicien, il vaut mieux maîtriser les bases avant de se lancer dans des sujets plus marginaux.
    Ca se discute.
    Dans ce fil, on voit quand même la même expression pour une période et une fréquence angulaire.
    Une simple AD solutionne le problème.
    Citation Envoyé par albanxiii Voir le message
    Par contre, je suis fan de votre signature
    Dans ce cas, voici la version complète mais trop longue comme signature :
    Hier, un produit pourri était de la merde. Aujourd'hui, il est immédiatement recyclable.

    Je poursuivais une idée fixe et m'étonnais de ne pas avancer.
    Moi ignare et moi pas comprendre langage avec «hasard», «réalité» et «existe».

  8. #7
    invitee00c9ce4

    Re : Oscillation harmonique simple d'un système masse-ressort.

    salut
    Nom : pendule16[1].gif
Affichages : 1678
Taille : 2,8 Ko

    mX"+kX=0

    X"+(k/m)X=0........................( 1) c'est une équation différentielle

    a=X"=d²X/dt² et (a) c'est l'accélartion


    donc on écrit l'équation :

    d²X/dt²+(k/m)X=0 (équation différentielle)

    la solution de cette équation est : X=Xm sin (wt+p) ,
    w: pulsation
    p : la phase initial.
    Xm: c'est l'amplitude du mouvement.

    en dérivant deux fois l'équation X=Xm sin (wt+p) ,on obtient X"=-W²X

    en reportant X et X" dans l'équation différentielle (1) ont obtient: W²=k/m donc W= racine (k/m) ( c'est démontré)

    T=2pi/W
    T c'est la période

    f=1/T
    f:fréquence


    T=2pi/[racine(k/m)] =2pi [racine(m/k)] =2pi (m/k)^0.5







    maintenant je reviens pour tes équations ,donc il y a une erreur au début : pour T=2pi/(k/m)^0.5 et pas T=2pi (k/m)^0.5

    ou bien T=2pi (m/k)^0.5 , Donc il faut inverser k/m

    cordialement

    Ing-R

  9. #8
    invitefbc652a5

    Re : Oscillation harmonique simple d'un système masse-ressort.

    Merci beaucoup pour vos réponse, particulièrement Ing-R! Et je ne connaissais pas le concept d'analyse dimensionnelle, mais c'est très intéressant!

  10. #9
    neo62950

    Re : Oscillation harmonique simple d'un système masse-ressort.

    bonjour,

    est ce que vous faites des etudes ou est ce juste par curiosité. Dans le premier cas, je pense qu'il est urgent de dire a votre professeur de vous enseigner le principe de l'AD ca prend pas longtemps et ca permet de verifier la cohérence de ces resultats.

    Mais a mon avis vous en avais deja entendu parler sous une forme ou sous une autre. Deja en primaire mon prof me disait toujours on additionne pas des choux et des carrottes pour obtenir des poireaux.

Discussions similaires

  1. oscillation harmonique simple
    Par invitece897353 dans le forum Physique
    Réponses: 1
    Dernier message: 11/01/2013, 12h06
  2. oscillation harmonique simple
    Par invitece897353 dans le forum Physique
    Réponses: 1
    Dernier message: 08/01/2013, 07h10
  3. Oscillation harmonique simple
    Par invite6b267ad3 dans le forum Physique
    Réponses: 3
    Dernier message: 06/06/2011, 00h38
  4. Système Ressort - Masse - Ressort - Résonance
    Par inviteeab8a242 dans le forum Physique
    Réponses: 1
    Dernier message: 21/03/2009, 13h21
  5. Oscillation d'un ressort sous sa propre masse
    Par invite581a4c33 dans le forum Physique
    Réponses: 1
    Dernier message: 04/01/2008, 10h21