Répondre à la discussion
Affichage des résultats 1 à 8 sur 8

Calcul d'erreur avec dérivées partielles



  1. #1
    nickcheung

    Calcul d'erreur avec dérivées partielles

    Bonjour,

    Voici un exercice corrigé:
    IMG_20151212_0004.jpg

    Ma question c'est comment on arrive au résultat de dérivation:
    calcul d'erreur.png

    En essayant de dériver à partir de la formule : [(f(x)/g(x))'/u'] pour le premier terme à calculer, je n'arrive pas au résultat de la solution.

    Y aurait-il d'autres formules?

    Merci d'avance

    -----


  2. Publicité
  3. #2
    Dynamix

    Re : Calcul d'erreur avec dérivées partielles

    Salut
    Citation Envoyé par nickcheung Voir le message
    pour le premier terme à calculer, je n'arrive pas au résultat de la solution.
    Montre nous ton calcul , on te dira ce qui ne va pas .

  4. #3
    nickcheung

    Re : Calcul d'erreur avec dérivées partielles

    Bonjour,

    alors voilà ce que j'ai fait et je suis bloqué:
    IMG_20151212_0007.jpg

    Je me demande si c'est vraiment cette formule qu'il faut utiliser.

    Merci d'avance

  5. #4
    Dynamix

    Re : Calcul d'erreur avec dérivées partielles

    La formule convient .
    Plus simplement , j' aurais écrit :
    (U.V)' = (U'.V + U.V')/V²
    Ton erreur vient de :
    ∂(sin w)/∂u
    que tu as traité comme :
    ∂(sin u)/∂u

  6. #5
    nickcheung

    Re : Calcul d'erreur avec dérivées partielles

    Citation Envoyé par Dynamix Voir le message
    La formule convient .
    Plus simplement , j' aurais écrit :
    (U.V)' = (U'.V + U.V')/V²
    Ton erreur vient de :
    ∂(sin w)/∂u
    que tu as traité comme :
    ∂(sin u)/∂u
    Merci beaucoup

    Quand vous dites que vous avez utilisé (U.V)', vous avez inversé 1/sinw par sinw^-1?

  7. A voir en vidéo sur Futura
  8. #6
    Dynamix

    Re : Calcul d'erreur avec dérivées partielles

    Non , je voulais écrire (U/V)'
    En plus j' ais oublié la signe moins .
    j' ais écrit trop vite
    Dernière modification par Dynamix ; 12/12/2015 à 23h39.

  9. Publicité
  10. #7
    nickcheung

    Re : Calcul d'erreur avec dérivées partielles

    J'ai réussi à faire celui-ci par contre j'en ai un autre ci- dessous qui n'est pas évident, je patauge pendant 30 minutes:
    ScreenShot00029.png

    Comment on s'y prend pour dériver cette horreur?

  11. #8
    nickcheung

    Re : Calcul d'erreur avec dérivées partielles

    Ce que j'ai fait c'est transformer y=h/h-h' en y= h x (h-h')^-1
    Donc ce que j'obtiens c'est:
    [(h-h')^-1] x 0,001 + [h x (-1 x (h-h')^-2)] x 0,001 + [h x (-1 x (h-h')^-2)] x 0,001

    J'ai comme résultat 0,026879587 et le corrigé m'indique que la réponse est 0,013 (donc la moitié du résultat que j'ai obtenu).

    J'ai essayé de le faire plusieurs fois, je n'arrive pas à avoir le résultat de la réponse, où aurai-je commis une erreur?

    Merci d'avance

Sur le même thème :

Discussions similaires

  1. Calcul d'utilité marginale - utilisation des dérivées partielles
    Par Annabelle62548 dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 15/03/2015, 14h30
  2. Calcul différentiel, dérivées partielles et composée.
    Par Teddy-mension dans le forum Mathématiques du supérieur
    Réponses: 0
    Dernier message: 08/03/2015, 16h03
  3. Calcul de dérivées partielles
    Par pizzouille dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 27/11/2013, 15h05
  4. Curiosité avec les dérivées partielles en coordonnées polaires
    Par Chandragon dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 14/04/2013, 11h35
  5. équation aux dérivées partielles avec deux fonctions
    Par parousky dans le forum Mathématiques du supérieur
    Réponses: 6
    Dernier message: 27/11/2009, 21h50