nombre particulier ?
Répondre à la discussion
Affichage des résultats 1 à 19 sur 19

nombre particulier ?



  1. #1
    invite35452583

    Wink nombre particulier ?


    ------

    Bonjour,
    Le défi, si vous l'acceptez, est de trouver :
    le plus petit entier non définissable en strictement moins de treize mots.

    Pour ceux qui n'auraient pas bien compris : 1 ne convient pas car il est définissable en un mot "un".

    Si, si c'est faisable de répondre sans "méga-ordinateur".

    PS : j'espère que cela n'a pas déjà été posé

    -----

  2. #2
    invitef51527eb

    Re : nombre particulier ?

    Salut,

    le plus petit entier non définissable en strictement moins de treize mots.
    Si j'ai bien compris, c'est le premier entier se définissant en treize mots, non?

    Je cherche ça en tout cas pour l'instant!!

  3. #3
    invite36e4dbaa

    Re : nombre particulier ?

    le plus petit entier non définissable en strictement moins de treize mots
    Au minimum

  4. #4
    invite1237a629

    Re : nombre particulier ?

    Plop,

    Je suis pas sûre du tout, j'ai fait ça intuitivement >_<

     Cliquez pour afficher

  5. A voir en vidéo sur Futura
  6. #5
    invite0ca7eb4d

    Re : nombre particulier ?

    je dirais:
     Cliquez pour afficher

  7. #6
    invitef51527eb

    Re : nombre particulier ?

    Je viens de le trouver aussi mais trop tard

  8. #7
    invite9c9b9968

    Re : nombre particulier ?

    Zuuut, moi aussi c'est trop tard

     Cliquez pour afficher

  9. #8
    invite36e4dbaa

    Re : nombre particulier ?

    La, j'objecte : si la réponse de MiMimolette (et de Quintillo) est acceptée, je dis qu'elle est est fausse, car ce nombre va aussi pouvoir être décrit par l'assertion :

    "le plus petit entier non définissable en strictement moins de treize mots".

    Et cette assertion ne comprend que douze mots.

    Voila donc un nombre entier qu'on ne peut pas à la fois décrire en moins de treize mots et qu'on peut décrire en douze mots.

  10. #9
    invite9c9b9968

    Re : nombre particulier ?

    Ahhh ! Pas mal ça

    Donc en fait ce nombre existe-t'il ?

  11. #10
    invite1237a629

    Re : nombre particulier ?

    Citation Envoyé par dgidgi Voir le message
    La, j'objecte : si la réponse de MiMimolette (et de Quintillo) est acceptée, je dis qu'elle est est fausse, car ce nombre va aussi pouvoir être décrit par l'assertion :

    "le plus petit entier non définissable en strictement moins de treize mots".

    Et cette assertion ne comprend que douze mots.

    Voila donc un nombre entier qu'on ne peut pas à la fois décrire en moins de treize mots et qu'on peut décrire en douze mots.
    Énorme

  12. #11
    invite36e4dbaa

    Re : nombre particulier ?

    Je ne dis pas que je m'en f..., mais je dis que ma première réponse était pas mal, parce que je ne voulais répondre que la citation (au moins je n'aurais pas écrit une erreur).

    Le système n'a pas voulu de mon message (la citation) et il m'a réclamé de rajouter 10 caractères.

    Ce qui explique la formule :"au minimum" dans ma (bonne?)réponse. Le blanc compte pour un caractère.

  13. #12
    Médiat

    Re : nombre particulier ?

    Citation Envoyé par Gwyddon Voir le message
    Donc en fait ce nombre existe-t'il ?
    Et s'il n'existe pas est-ce que cela est contradictoire avec la propriété de bon ordre de IN ?
    Je suis Charlie.
    J'affirme péremptoirement que toute affirmation péremptoire est fausse

  14. #13
    invite36e4dbaa

    Re : nombre particulier ?

    Et s'il existait, l'ordre de N ne serait pas le même dans tous les pays (les nonantes et autres septantes changent pour le décompte des mots, sans parler des langues non francophones.......)

  15. #14
    invite008a9495

    Re : nombre particulier ?

    le defi est de trouver un nombre entier, mais pas forcement naturel, donc
     Cliquez pour afficher

  16. #15
    invite35452583

    Re : nombre particulier ?

    Citation Envoyé par dgidgi Voir le message
    La, j'objecte : si la réponse de MiMimolette (et de Quintillo) est acceptée, je dis qu'elle est est fausse, car ce nombre va aussi pouvoir être décrit par l'assertion :

    "le plus petit entier non définissable en strictement moins de treize mots".

    Et cette assertion ne comprend que douze mots.

    Voila donc un nombre entier qu'on ne peut pas à la fois décrire en moins de treize mots et qu'on peut décrire en douze mots.
    Tout est dit (ou presque) pour ce soi-disant nombre. Amusant, non ?
    Citation Envoyé par Médiat
    Et s'il n'existe pas est-ce que cela est contradictoire avec la propriété de bon ordre de IN ?
    Non (mais tu le sais), c'est un exemple de mauvaise définition (elle change de sens car elle contient une part d'auto-référence, un tel nombre peut se définir ainsi s'il existait).

  17. #16
    Médiat

    Re : nombre particulier ?

    Citation Envoyé par homotopie Voir le message
    Non (mais tu le sais), c'est un exemple de mauvaise définition (elle change de sens car elle contient une part d'auto-référence, un tel nombre peut se définir ainsi s'il existait).
    C'est pas bien d'avoir révélé si vite le "poteau rose".
    Je suis Charlie.
    J'affirme péremptoirement que toute affirmation péremptoire est fausse

  18. #17
    invite35452583

    Re : nombre particulier ?

    Citation Envoyé par Médiat Voir le message
    C'est pas bien d'avoir révélé si vite le "poteau rose".
    Désolé.

    Un autre petit problème alors (certes beaucoup plus facile) :
    Dans un pays très lointain, j'ai eu l'occasion d'assister à une cérémonie bizzare. Un prisonnier a été amené devant deux portes. Derrière l'une d'elles, il y avait un dragon (un qui crache des flammes et tout et tout...), derrière l'autre il y avait une princesse.
    On expliqua la situation au prisonnier qui devait choisir une porte. (Sa préférence allait à la princesse.)
    Sur chacune de ces portes une inscription.
    Sur la porte A, "une des insciptions est fausse"
    Sur la porte B, "le dragon est derrière cette porte"
    Quelle porte auriez-vous conseillé au prisonnier ?

    Comme pour ma part je sais où a été placé le dragon et que je ne sais pas quand je pourrais revenir, je vous indique* tout de suite quelle porte ouvrir sans le raisonnement (je laisse donc matière à participation).
    (* : à "déspoiler" qu'après avoir répondu, je vous fais confiance ) :
     Cliquez pour afficher

  19. #18
    invite2cef6238

    Re : nombre particulier ?

    Si le dragon n'est pas derrière la porte B, alors l'inscription sur la porte B est fausse, et celle sur la porte A est vérifiée.
    Si le dragon est bien derrière la porte B, alors l'insription sur la porte B est vraie. Donc l'inscription fausse dont on parle sur l'inscription de la porte A est forcément celle de la porte A. Mais si elle est fausse, c'est que l'assertion "une des inscription est fausse" est... fausse. Donc on a au choix : "aucune inscription n'est fausse", ce qui ne correspond pas puisque A est fausse, et "deux inscriptions sont fausses" ce qui ne correspond pas non plus puisque B est vraie.

    La deuxième solution étant impossible (?), le dragon est derrière la porte A.

  20. #19
    invite35452583

    Re : nombre particulier ?

    Citation Envoyé par Coco44 Voir le message
    Si le dragon n'est pas derrière la porte B, alors l'inscription sur la porte B est fausse, et celle sur la porte A est vérifiée.
    Si le dragon est bien derrière la porte B, alors l'insription sur la porte B est vraie. Donc l'inscription fausse dont on parle sur l'inscription de la porte A est forcément celle de la porte A. Mais si elle est fausse, c'est que l'assertion "une des inscription est fausse" est... fausse. Donc on a au choix : "aucune inscription n'est fausse", ce qui ne correspond pas puisque A est fausse, et "deux inscriptions sont fausses" ce qui ne correspond pas non plus puisque B est vraie.

    La deuxième solution étant impossible (?), le dragon est derrière la porte A.
    Pas trop mal comme raisonnement, tu as gagné le droit de "déspoiler" (bref de cliquer sur "cliquez pour afficher").
    Les autres aussi, vous pouvez "déspoiler", la 1ère partie est finie.

Discussions similaires

  1. Aldéhyde = cétone particulier?
    Par invitec38e3ca5 dans le forum Chimie
    Réponses: 2
    Dernier message: 24/10/2007, 18h47
  2. Bateau un peu particulier....
    Par Tropique dans le forum Science ludique : la science en s'amusant
    Réponses: 0
    Dernier message: 26/06/2007, 11h36
  3. Un marquage particulier de l'ADN
    Par invite633f528d dans le forum Biologie
    Réponses: 1
    Dernier message: 22/03/2007, 22h34
  4. prof particulier
    Par invited9d78a37 dans le forum Orientation après le BAC
    Réponses: 9
    Dernier message: 17/08/2006, 13h04