calcul de vitesse tout bete
Affichage des résultats 1 à 3 sur 3

calcul de vitesse tout bete



  1. #1
    invitec9cf4399

    calcul de vitesse tout bete


    ------

    Bonjour...

    Excusez la pauvreté de ma question, mais je ne saisis pas tres bien un point sur le calcul de vitesse.
    Si on mesure a intervalle régulier la chute d'un objet, on a un relevé d'une altitude en fct du temps.

    Dans certains exercices, la vitesse moyenne sur l'intervalle i est calculée de la sorte:
    Vi=d(i)-d(i-1)/t avec t l'intervalle de mesure.

    Dans un autre bouquin toujours ds le cas d'une chute libre la vitesse i (il ne précise pas si c'est un vit instantanée ou non) est calculée de la sorte:
    Vi=d(i+1)-d(i-1)/2*t

    Je saisis pas la différence entre les deux. mise a part qu'on ne prends pas le meme intervalle.
    Merci d'avance !!!

    -----

  2. #2
    zoup1

    Re : calcul de vitesse tout bete

    Dans les 2 cas le calcul de la vitesse est de la forme
    dans le premier cas et
    dans le deuxième cas et

    Dans les 2 cas il s'agit d'une approximation de la vitesse réelle.

    La "vraie" vitesse est une dérivé c'est la limite de la première expression dans la limite où tend vers .
    Pour le reste, on a à faire à 2 approximations différentes de la même expression. Il n'y en a pas vraiment une meilleure que l'autre... ou plutot on peut discuter des avantages et des inconvénients de l'une et de l'autre.
    Il faut noter qu'il existe plein d'autres façon plus sophistiquée de faire cette mesure qui de toute façon revient à caculer la vitesse moyenne entre et
    Je te donne une idée, tu me donnes une idée, nous avons chacun deux idées.

  3. #3
    invitea3eb043e

    Re : calcul de vitesse tout bete

    Il y a là une petite astuce.
    Supposons que l'on ait affaire à un mouvement uniformément accéléré : d(i) = g/2 . t² + v0.t + d0
    Si on prend comme vitesse v(i) = (d(i+tau) - d(i))/tau, on va trouver :
    v(i) = g.i + v0 + g/2.tau
    qui ne correspond à la vraie vitesse (g.i + v0) que si tau est vraiment petit.
    Alors que si on prend v(i) = (d(i+tau) - d(i-tau))/2.tau, on trouve :
    v(i) = g.i +v0
    L'approximation est meilleure, c'est même exact pour un mouvement uniformément accéléré.
    Cela est relié à une propriété géométrique de la tangente à la parabole.

Discussions similaires

  1. Bloqué sur un exercice tout bête
    Par invite6c1d61f4 dans le forum Physique
    Réponses: 4
    Dernier message: 29/11/2007, 21h05
  2. problème tout bête
    Par invited78e0bbb dans le forum Mathématiques du collège et du lycée
    Réponses: 4
    Dernier message: 01/10/2007, 23h08
  3. pb tout bete de term S
    Par inviteb0dd0da9 dans le forum Physique
    Réponses: 3
    Dernier message: 22/03/2007, 14h24
  4. calcul tout bête de (ppm)
    Par invite9d0bea2c dans le forum Chimie
    Réponses: 1
    Dernier message: 16/02/2007, 10h33
  5. calcul de dilution tout bête....mais je cale!
    Par invitebc3e6127 dans le forum Chimie
    Réponses: 4
    Dernier message: 05/09/2006, 08h30