Univers et trou noir
Affichage des résultats 1 à 22 sur 22

Univers et trou noir



  1. #1
    invited08a4fc9

    Question Univers et trou noir


    ------

    A-t-on une idée la masse de l'univers? Dans l'affirmative, quelle est le diamètre du trou noir équivalent?
    Quel est son rapport avec la masse de Planck?

    -----

  2. #2
    invite48f3b69d

    Re : Univers et trou noir

    Salut!

    C'est interessant comme idée et qu'en est-il du rayon de (sorry j'ai tellement cherché le mot que j'en ai oublié j'usqu'a la signification) schwarzwild a coriger svp!

    Merci

  3. #3
    Gilgamesh
    Modérateur

    Re : Univers et trou noir

    Citation Envoyé par HENRIV
    A-t-on une idée la masse de l'univers? Dans l'affirmative, quelle est le diamètre du trou noir équivalent?
    Boarf... si on ne considère que la matière baryonique, dans les 1054 à 1055 kg.

    Le rayon du TN correspondant :

    R=2GM/c²
    ln(R) -10+54 (ou 55) - 17 soit
    R = 1027 à 1028 m
    Une al = 1016 m
    Donc R va chercher dans les 10 à 100 Gly

    hannnn... le diamètre de l'Univers !

    Sommes-nous donc dans un TN ? (discussion à repêcher avec la fonction Recherche)


    Quel est son rapport avec la masse de Planck?
    Euh? Aucun.

    a+

  4. #4
    invite48f3b69d

    Re : Univers et trou noir

    Resalut

    La force gravitationelle d'un trou noir est-elle equivalente a la somme des force gravitationelle de tout les corps angloutis?

    Merci

  5. A voir en vidéo sur Futura
  6. #5
    Gilgamesh
    Modérateur

    Re : Univers et trou noir

    Citation Envoyé par aziz bleu blanc belge
    Resalut

    La force gravitationelle d'un trou noir est-elle equivalente a la somme des force gravitationelle de tout les corps angloutis?

    Merci
    Vouizénon dans le cas abordé par ce fil.

    A la base oui, bien sûr : si tu te trouves à 1 milliard de km d'un TN de 10 Ms tu ressens exactement la même force de gravitation que si à sa place se trouvait une étoile de 10 Ms.

    Mais par ailleurs, le théorème de Gauss dit que, dans le cas généralement bien vérifié d'une répartition homogène des masses, l'attraction gravitationnelle ne dépend que de la masse qui se trouve à l'intérieur de la sphère sur laquelle tu poses tes pieds (manière de parler). Pas de celle se trouvant en dehors. Dans le cas d'un TN qui ferait des myards de Ms ça n'est vérifié que si tu situe à des distances compatibles avec la répartition de myards de Ms.

    Or si le TN a la masse de l'Univers, pas moyen (d'être à l'extérieur de l'Univers)

    a+
    Dernière modification par Gilgamesh ; 04/06/2006 à 00h15.

  7. #6
    invite48f3b69d

    Re : Univers et trou noir

    Merci bien apparement tu as tout de suite compris ou je voulais en venir. a+

  8. #7
    invite03f54461

    Re : Univers et trou noir

    Citation Envoyé par Gilgamesh
    A la base oui, bien sûr : si tu te trouves à 1 milliard de km d'un TN de 10 Ms tu ressens exactement la même force de gravitation que si à sa place se trouvait une étoile de 10 Ms.
    OK, mais juste un truc, pour que je pige bien, Ca veut dire quoi, au juste, la distance à un TN ? de centre de gravité à centre de gravité en géométrie euclidienne ?

    T'as pas des tits blèmes de contraction ou de dilatation d'espace temps dans la mesure de distance ?

  9. #8
    invite48f3b69d

    Re : Univers et trou noir

    Salut DonPanic,

    je pense que pour un TN il faut prendre l'horizon evenementiel et pour une etoile son centre geométrique pour eviter les distorsions.

    a+

  10. #9
    invite79aadfd3

    Re : Univers et trou noir

    Bonjour,

    la taille d'un trou noir qui aurait la masse de l'univers observable, c'est en gros la taille de l'univers observable. C'est tout sauf surprenant puisque c'est là une conséquence immédiate des équations de Friedmann. Celles-ci donnent en effet la relation entre taux d'expansion H à la densité de masse mu :

    3 H^2 = 8 pi G mu

    On remplace rho par le rapport de la masse de l'univers observable à son volume. Soit R son rayon, on a

    H^2 = 2 G M / R^3

    Il existe une relation entre le rayon de Hubble R_H = c / H et le rayon de l'univers observable. Cette relation s'écrit R = alpha R_H, où alpha est un nombre sans dimension dont la valeur exacte dépend de la cosmologie. A l'heure actuelle, on a alpha environ égal à 3. Il vient donc

    alpha^2 c^2 / R^2 = 2 G M / R^3

    d'où

    R = [2 G M / c^2] / (alpha^2)

    Au facteur alpha^2 près, c'est exactement la relation masse-rayon pour un trou noir.

    Tout ceci n'est finalement pas très surprenant. En cosmologie, dans un modèle de type Big Bang comme celui qui décrit l'univers observable on est en présence d'un horizon (càd d'une région au dela de laquelle on ne voit plus rien car la lumière n'a pas eu le temps de nos parvenir), ce qui est assez proche de la situation d'un trou noir normal de l'intérieur duquel on ne voit rien. L'analogie entre trou noir et univers en expansion est même beaucoup plus forte que cela dans un espace de de Sitter (univers vide de matière mais avec constante cosmologique), et c'est même un truc assez crucial en cosmologie car cela permet de faire une analogie assez remarquable entre la génération des fluctuations quantiques pendant l'inflation et le rayonnement de Hawking d'un trou noir.




    Incidemment : que signifie "la distance à un trou noir" ? On ne peut mesurer le "rayon" d'un trou noir car pour cela il faudrait aller à l'intérieur et ressortir de l'autre côté , ce qui est impossible. Par contre on peut en faire le tour et mesurer sa circonférence. De même, un observateur peut faire le tour d'un trou noir tout en restant "a même distance de celui-ci" (càd en s'arrangeant en gros pour que le diamètre angulaire du trou noir reste constant lors de son trajet), et mesurer la distance parcourue. Il aura donc mesuré la circonférence d'une trajectoire circulaire centrée sur le trou noir. Quand on parle de distance "à" un trou noir, on se réfère en fait à (1/2 pi) * la circonférence du cercle en question.



    Autre chose : je prends deux trou noirs d'une masse solaire, je les fais fusionner. Quelle est la masse du trou noir final ? Moins de deux masses solaires. Pourquoi ? Parce que l'ors du processus de fusion, les deux trous noirs ont perdu de l'énergie en rayonnant des ondes gravitationnelles. La masse (énergie) finale est donc inférieure à la somme des masses (énergies) initiale car une partie de l'énergie totale a été rayonnées à l'infini. Par contre la masse finale ne peut être arbitrairement petite. Un théorème célèbre dû à Hawking dit que la masse finale du trou noir est telle que son aire est supérieure à la somme des aires des trous noirs initiaux. Dans le présent contexte, et en supposant que le trou noir final n'a pas de moment cinétique, cela dit que la masse finale est comprise entre sqrt(2) et 2 masses solaires.

  11. #10
    invite03f54461

    Re : Univers et trou noir

    Citation Envoyé par alain_r
    Incidemment : que signifie "la distance à un trou noir" ? On ne peut mesurer le "rayon" d'un trou noir car pour cela il faudrait aller à l'intérieur et ressortir de l'autre côté , ce qui est impossible. Par contre on peut en faire le tour et mesurer sa circonférence. De même, un observateur peut faire le tour d'un trou noir tout en restant "a même distance de celui-ci" (càd en s'arrangeant en gros pour que le diamètre angulaire du trou noir reste constant lors de son trajet), et mesurer la distance parcourue. Il aura donc mesuré la circonférence d'une trajectoire circulaire centrée sur le trou noir. Quand on parle de distance "à" un trou noir, on se réfère en fait à (1/2 pi) * la circonférence du cercle en question.
    Ok, mais ce n'est pas cela le véritable objet de la question.
    On fixe une distance centre de gravité de l'observateur-centre de gravité d'un objet de masse 10 Ms .
    Le fait qu'il y ait un TN pil poil à la place d'une étoile de même masse affectera-t-il cette distance ?
    (faut-il tenir compte de variation de courbure gravitationnelle)

  12. #11
    invited08a4fc9

    Re : Univers et trou noir

    Comme tu dis, le rayon en années lumières est de 10(28-16) = 10 12 al, en gros le diamètre qui correspond à l'âge de l'univers...Nous serions dans qques chose d'infiniment concentré, allez comprendre qque chose. Je ferai appel au moteur de recherche TN. Merci de la réponse.

    Citation Envoyé par Gilgamesh
    Boarf... si on ne considère que la matière baryonique, dans les 1054 à 1055 kg.

    Le rayon du TN correspondant :

    R=2GM/c²
    ln(R) -10+54 (ou 55) - 17 soit
    R = 1027 à 1028 m
    Une al = 1016 m
    Donc R va chercher dans les 10 à 100 Gly

    hannnn... le diamètre de l'Univers !

    Sommes-nous donc dans un TN ? (discussion à repêcher avec la fonction Recherche)




    Euh? Aucun.

    a+

  13. #12
    invite88ef51f0

    Re : Univers et trou noir

    Salut,
    Ce qui compte pour le rayon de Schwartzschild, ce n'est pas la densité (m/R3) mais la compacité (m/R). Du coup, pour quelque chose de très grand, tu peux avoir une densité très faible et une compacité très grande (le rapport des deux varie comme 1/R²).

  14. #13
    Gilgamesh
    Modérateur

    Re : Univers et trou noir

    Citation Envoyé par aziz bleu blanc belge
    Salut DonPanic,

    je pense que pour un TN il faut prendre l'horizon evenementiel et pour une etoile son centre geométrique pour eviter les distorsions.

    a+

    Non, non, pareil dans les deux cas. La distance à considérer est celle au centre de gravité (la singulaité dans le cas du TN). Dans les cas de vraiment très gros TN l'écart entre la distance séparant de l'horizon et celle séparant de la singularité centrale n'est pas négligeable du tout (genre qq ua) et elle l'est d'autant moins que tu es proche.

    a+

  15. #14
    Gilgamesh
    Modérateur

    Re : Univers et trou noir

    Citation Envoyé par alain_r
    Celles-ci donnent en effet la relation entre taux d'expansion H à la densité de masse mu :

    3 H^2 = 8 pi G rho

    juste ça.






    oui et je rajoute 10 caractères voire meme plus content ?

  16. #15
    Gilgamesh
    Modérateur

    Re : Univers et trou noir

    Citation Envoyé par alain_r
    L'analogie entre trou noir et univers en expansion est même beaucoup plus forte que cela dans un espace de de Sitter (univers vide de matière mais avec constante cosmologique), et c'est même un truc assez crucial en cosmologie car cela permet de faire une analogie assez remarquable entre la génération des fluctuations quantiques pendant l'inflation et le rayonnement de Hawking d'un trou noir.
    C'est la grosse classe, ça. Ca s'expose simplement ?

    merci etk très intéressant, ton post (comme d'hab').

    a+

  17. #16
    invite79aadfd3

    Re : Univers et trou noir

    C'est essentiellement un changement de variable qui le montre. L'espace de de sitter a un élément de longueur donné par

    ds^2 = c^2 dt^2 - a_0^2 exp(2HT) dl^2

    où dl^2 = dx^2 + dy^2 + dz^2
    et H est la constante de Hubble.

    On prend d'abord les coordonnées "physiques" X, Y, Z déduites des coordonnées comobiles x, y, z par

    X = a_0 exp(Ht) x

    En différenciant on obtient

    a_0 exp(Ht) dx = dX - a_0 exp(Ht) x H dt = dX - X H dt

    donc

    a_0^2 exp(2HT) dl^2 = dL^2 + R^2 H^2 dt - 2 R dR H dt

    avec R^2 = X^2 + Y^2 + Z^2

    On en déduit

    ds^2 = (c^2 - R^2 H^2) dt^2 - dL^2 + 2 R dR H dt

    On passe des coordonnées X, Y, Z à leur équivalent sphérique. Ainsi,

    dL^2 = dR^2 + R^2 d^2 Omega,

    où d^2 Omega = d theta^2 + sin^2 theta d phi^2

    et

    ds^2 = (c^2 - R^2 H^2) dt^2 - dR^2 + 2 R dR H dt - R^2 d^2 omega

    L'idée est ensuite de changer la coordonée t de façon à grouper les premier et troisième termes :

    (c^2 - R^2 H^2) dt^2 + 2 R dR H dt = (c^2 - R^2 H^2) (dt + R H dR / (c^2 - R^2 H^2))^2 - R^2 H^2 dR^2 / (c^2 - H^2 R^2)

    On pose donc

    dT = dt + R H dR / (c^2 - R^2 H^2), soit
    T = t - (1/2) ln|c^2 - R^2 H^2|

    et l'élément de longueur se réécrit

    ds^2 = (c^2 - R^2 H^2) dT^2 + 2 R dR H dt - R^2 d^2 omega - dR^2 - R^2 H^2 dR^2 / (c^2 - H^2 R^2)
    = (c^2 - R^2 H^2) dT^2 + 2 R dR H dt - R^2 d^2 omega - dR^2 c^2 / (c^2 - H^2 R^2)
    = c^2 dT^2 f(R) - dR^2 / f(R) - R^2 d^2 Omega

    avec

    f(R) = 1 - (R H / c)^2

    On a exactement la même métrique que dans Schwarztschild, si ce n'est que la fonction f n'est pas
    1 - 2 G M / R c^2
    mais
    1 - (R H / c)^2

    Dans Schwartschild, la fonction f tend vers 1 (dans une région qui est à l'extérieur et loin du trou noir), dans de Sitter, elle tend vers 1 au voisinage de l'origine. Dans les deux cas, elle s'annule à une valeur de R finie (resp. 2 G M / c^2 et c / H), ce qui correspond dans les deux cas à un horizon. La différence c'est dans un cas l'horizon entoure l'origine des coordonnées spatiales et est vue telle quelle par quelqu'un qui en est à l'extérieur, alors que dans de Sitter, l'horizon est vu par quelqu'un situé au voisinage de l'origine dans toutes les directions, mais sinon les deux situations sont très proches. En particulier, le rayonnement de Hawking peut être vu comme conséquence d'une métrique qui tend asymptotiquement vers Schwarzschild et qui présente un horizon. Cela suggère qu'un rayonnement du même type a des chance d'apparaître dans une situation où une métrique tend vers de Sitter avec un horizon. C'est en fait exactement ce qu'il se passe pendant l'inflation.

  18. #17
    Thioclou

    Re : Univers et trou noir

    Bonjour,
    Citation Envoyé par Gilgamesh
    Citation Envoyé par alain_r
    L'analogie entre trou noir et univers en expansion est même beaucoup plus forte que cela dans un espace de de Sitter (univers vide de matière mais avec constante cosmologique), et c'est même un truc assez crucial en cosmologie car cela permet de faire une analogie assez remarquable entre la génération des fluctuations quantiques pendant l'inflation et le rayonnement de Hawking d'un trou noir.
    C'est la grosse classe, ça. Ca s'expose simplement ?

    merci etk très intéressant, ton post (comme d'hab').

    a+
    Les propriétés d'un trou blanc étant identiques à celles d'un trou noir avec inversion du temps, ne serait-il pas préférable de parler d'analogie entre trou blanc et expansion de l'univers ?

  19. #18
    Gilgamesh
    Modérateur

    Re : Univers et trou noir

    merci alain.

    a+

    ps : la touche ² est bien pratique...

  20. #19
    invited08a4fc9

    Re : Univers et trou noir

    Je trouve çà surprenant quand même, imaginons que l'univers se contracte, son diamètre diminue, mais pas la taille du trou noir? de même l'univers est en expansion, il n'y a pas de raison que la taille du trou noir augmente, puisqu'il n'y a pas création de matière. quid?



    Citation Envoyé par alain_r
    Bonjour,

    la taille d'un trou noir qui aurait la masse de l'univers observable, c'est en gros la taille de l'univers observable. C'est tout sauf surprenant puisque c'est là une conséquence immédiate des équations de Friedmann. Celles-ci donnent en effet la relation entre taux d'expansion H à la densité de masse mu :

    3 H^2 = 8 pi G mu

    On remplace rho par le rapport de la masse de l'univers observable à son volume. Soit R son rayon, on a

    H^2 = 2 G M / R^3

    Il existe une relation entre le rayon de Hubble R_H = c / H et le rayon de l'univers observable. Cette relation s'écrit R = alpha R_H, où alpha est un nombre sans dimension dont la valeur exacte dépend de la cosmologie. A l'heure actuelle, on a alpha environ égal à 3. Il vient donc

    alpha^2 c^2 / R^2 = 2 G M / R^3

    d'où

    R = [2 G M / c^2] / (alpha^2)

    Au facteur alpha^2 près, c'est exactement la relation masse-rayon pour un trou noir.

    Tout ceci n'est finalement pas très surprenant. En cosmologie, dans un modèle de type Big Bang comme celui qui décrit l'univers observable on est en présence d'un horizon (càd d'une région au dela de laquelle on ne voit plus rien car la lumière n'a pas eu le temps de nos parvenir), ce qui est assez proche de la situation d'un trou noir normal de l'intérieur duquel on ne voit rien. L'analogie entre trou noir et univers en expansion est même beaucoup plus forte que cela dans un espace de de Sitter (univers vide de matière mais avec constante cosmologique), et c'est même un truc assez crucial en cosmologie car cela permet de faire une analogie assez remarquable entre la génération des fluctuations quantiques pendant l'inflation et le rayonnement de Hawking d'un trou noir.




    Incidemment : que signifie "la distance à un trou noir" ? On ne peut mesurer le "rayon" d'un trou noir car pour cela il faudrait aller à l'intérieur et ressortir de l'autre côté , ce qui est impossible. Par contre on peut en faire le tour et mesurer sa circonférence. De même, un observateur peut faire le tour d'un trou noir tout en restant "a même distance de celui-ci" (càd en s'arrangeant en gros pour que le diamètre angulaire du trou noir reste constant lors de son trajet), et mesurer la distance parcourue. Il aura donc mesuré la circonférence d'une trajectoire circulaire centrée sur le trou noir. Quand on parle de distance "à" un trou noir, on se réfère en fait à (1/2 pi) * la circonférence du cercle en question.



    Autre chose : je prends deux trou noirs d'une masse solaire, je les fais fusionner. Quelle est la masse du trou noir final ? Moins de deux masses solaires. Pourquoi ? Parce que l'ors du processus de fusion, les deux trous noirs ont perdu de l'énergie en rayonnant des ondes gravitationnelles. La masse (énergie) finale est donc inférieure à la somme des masses (énergies) initiale car une partie de l'énergie totale a été rayonnées à l'infini. Par contre la masse finale ne peut être arbitrairement petite. Un théorème célèbre dû à Hawking dit que la masse finale du trou noir est telle que son aire est supérieure à la somme des aires des trous noirs initiaux. Dans le présent contexte, et en supposant que le trou noir final n'a pas de moment cinétique, cela dit que la masse finale est comprise entre sqrt(2) et 2 masses solaires.

  21. #20
    Gilgamesh
    Modérateur

    Re : Univers et trou noir

    Citation Envoyé par HENRIV
    Je trouve çà surprenant quand même, imaginons que l'univers se contracte, son diamètre diminue, mais pas la taille du trou noir? de même l'univers est en expansion, il n'y a pas de raison que la taille du trou noir augmente, puisqu'il n'y a pas création de matière. quid?
    Attention, dans le cas de l'Univers et quand on le met en rapport avec un TN de même masse, ce qui nous intéresse se passe *sous* l'horizon.

    Dans un TN, la métrique est dynamique, comme dans l'Univers. Un objet ne peut rester à la même place, il est entraîné vers la singularité et scrounch. Une sorte de Big Crunch permanent, en qq sorte (<-- ça manque sans doute de rigueur...). Et ça ne change pas la taille de l'horizon.

    a+

  22. #21
    invited08a4fc9

    Re : Univers et trou noir

    OK. Exact, la taille de l'horizon d'un TN ne change évidemment pas question subsidiare, si l'univers est en expansion (accélérée apparemment), se pourrait-il que l'univers "dépasse" l'horizon du TN, "rayonne" en qque sorte?



    Citation Envoyé par Gilgamesh
    Attention, dans le cas de l'Univers et quand on le met en rapport avec un TN de même masse, ce qui nous intéresse se passe *sous* l'horizon.

    Dans un TN, la métrique est dynamique, comme dans l'Univers. Un objet ne peut rester à la même place, il est entraîné vers la singularité et scrounch. Une sorte de Big Crunch permanent, en qq sorte (<-- ça manque sans doute de rigueur...). Et ça ne change pas la taille de l'horizon.

    a+

  23. #22
    Gilgamesh
    Modérateur

    Re : Univers et trou noir

    Citation Envoyé par HENRIV
    OK. Exact, la taille de l'horizon d'un TN ne change évidemment pas question subsidiare, si l'univers est en expansion (accélérée apparemment), se pourrait-il que l'univers "dépasse" l'horizon du TN, "rayonne" en qque sorte?
    L'analogie univers - TN doit s'analyser plus finement que ça. La réponse est dans le post d'alain : la notion d'horizon est différente dans le cas TN et dans celui Univers. Dans le TN l'horizon a un sens pour l'observateur extérieur, dans celui de l'univers, l'horizon a un sens pour l'observateur intérieur.

    Dans les deux cas, tout l'espace-temps derrière l'horizon est sans relation causale avec l'observateur (c'est sa definition).


    Dans Schwartschild, la fonction f tend vers 1 (dans une région qui est à l'extérieur et loin du trou noir), dans de Sitter, elle tend vers 1 au voisinage de l'origine. Dans les deux cas, elle s'annule à une valeur de R finie (resp. 2 GM/c² et c/H), ce qui correspond dans les deux cas à un horizon. La différence c'est dans un cas l'horizon entoure l'origine des coordonnées spatiales et est vue telle quelle par quelqu'un qui en est à l'extérieur, alors que dans de Sitter, l'horizon est vu par quelqu'un situé au voisinage de l'origine dans toutes les directions, mais sinon les deux situations sont très proches. En particulier, le rayonnement de Hawking peut être vu comme conséquence d'une métrique qui tend asymptotiquement vers Schwarzschild et qui présente un horizon. Cela suggère qu'un rayonnement du même type a des chance d'apparaître dans une situation où une métrique tend vers de Sitter avec un horizon. C'est en fait exactement ce qu'il se passe pendant l'inflation.

    a+
    Dernière modification par Gilgamesh ; 08/06/2006 à 10h48.

Discussions similaires

  1. trou noir pourrai t'il créer un univers parallelle..?
    Par invite3cc0cd4c dans le forum Archives
    Réponses: 27
    Dernier message: 08/02/2013, 18h33
  2. Trou noir, trou blanc, trou de ver
    Par invite7753e15a dans le forum Physique
    Réponses: 4
    Dernier message: 30/06/2007, 19h12
  3. Trou noir et univers primordial
    Par inviteef189058 dans le forum Archives
    Réponses: 6
    Dernier message: 12/04/2006, 09h20
  4. notre univers ; un trou noir ???
    Par invite447664a3 dans le forum Archives
    Réponses: 7
    Dernier message: 04/04/2005, 19h33
  5. Univers dans trou noir
    Par invite6c250b59 dans le forum Archives
    Réponses: 52
    Dernier message: 09/10/2004, 00h05