##split depuis la discussion https://forums.futura-sciences.com/d...mologique.html ##
C'est du moins ce qui est communément admis. Mais tout le monde n'est pas d'accord sur le sujet : cf. la "timescape cosmology" de David Wiltshire. Pour plus d'explications, voir le site où il présente son modèle, avec des liens vers ses publications. En particulier celle-ci qui présente les fondements conceptuels du modèle, et dont Wiltshire dit qu'elle est accessible à un large public de physiciens. Ci-dessous son abstract :
The strong equivalence principle is extended in application to averaged dynamical fields in cosmology to include the role of the average density in the determination of inertial frames. The resulting cosmological equivalence principle is applied to the problem of synchronisation of clocks in the observed universe. Once density perturbations grow to give density contrasts of order one on scales of tens of megaparsecs, the integrated deceleration of the local background regions of voids relative to galaxies must be accounted for in the relative synchronisation of clocks of ideal observers who measure an isotropic cosmic microwave background. The relative deceleration of the background can be expected to represent a scale in which weak-field Newtonian dynamics should be modified to account for dynamical gradients in the Ricci scalar curvature of space. This acceleration scale is estimated using the best-fit nonlinear bubble model of the universe with backreaction. At redshifts z < 0.25 the scale is found to coincide with the empirical acceleration scale of modified Newtonian dynamics. At larger redshifts the scale varies in a manner which is likely to be important for understanding dynamics of galaxy clusters, and structure formation. Although the relative deceleration, typically of order 10^{-10} m/s^2, is small, when integrated over the lifetime of the universe it amounts to an accumulated relative difference of 38% in the rate of average clocks in galaxies as compared to volume-average clocks in the emptiness of voids. A number of foundational aspects of the cosmological equivalence principle are also discussed, including its relation to Mach's principle, the Weyl curvature hypothesis and the initial conditions of the universe.
-----