Trigonometrie : mesure principale
Répondre à la discussion
Affichage des résultats 1 à 13 sur 13

Trigonometrie : mesure principale



  1. #1
    invitecc79f7ac

    Question Trigonometrie : mesure principale


    ------

    Quelqu'un pourrait m'expliquer comment calculer la mesure principale d'un angle en radian?
    Je prend l'exemple de -35 pie / 2

    merci d'avance.

    -----

  2. #2
    invitea3eb043e

    Re : Trigonometrie : mesure principale

    Pour obtenir la mesure principale, tu ajoutes ou retranches des 2 pi jusqu'à ce que ça donne un angle entre 0 et 2 pi (c'est la convention générale).
    Ici, tu as -17,5 pi. Si tu ajoutes 18 pi (9 fois 2 pi), tu tomberas bon.

  3. #3
    invitecc79f7ac

    Unhappy Re : Trigonometrie : mesure principale

    Vous pouvez me détailler le calcule car j'y pas très claire..

  4. #4
    invited7005a5b

    Re : Trigonometrie : mesure principale

    salut. lorsqu'on te donne un angle quelconque et on te demande sa mesure principale il te suffit de l'exprimer sous forme d'une somme d'une mesure a comprise entre 0 et 2pi, et de produit k2pi avec K entier relatif.
    Pratiquement pour -35pi/2 par exemple,tu decomposes le numérateur(ici 35) en multiple du denominateur(ici 2) ;ainsi par exemple -35pi/2=-(34+1)pi/2=-17pi-pi/2
    Tu refais pareil avec -17pi. Donc-17pi=-(16+1)pi=-8(2)pi-pi/=-8(2pi)-Pi En remplacant -17pi/2 par cette valeur on a:
    -35pi/2= -8(2pi)-Pi-Pi/2=-8(2pi)-3pi/2
    ainsi,en terme de mesure principale,-35pi/2 a meme mesure principale que -pi(tu vois maintenant ce que j'entends par exprimer ton angle en fonction de k2pi qui a 0 pour mesure principale)
    Il te reste a trouver la mesure principale DE -3pi/2;on resout ce probleme en ajoutant a ce nombre -pi un miltiple de 2pi pour obtenir une mesure comprise entre 0 et 2pi;
    on ajouteras 2pi et on abtiendras 2pi-3pi/2=pi/2;
    en definitive ton angle -35pi/2 a pour mesure principale pi/2.

  5. A voir en vidéo sur Futura
  6. #5
    Duke Alchemist

    Re : Trigonometrie : mesure principale

    Bonsoir.

    Le but est de trouver l'angle correspondant à -35pi/2 mais qui est dans [0;2pi[ (de manière à ce qut tu puisses le placer facilement sur un cercle trigo par exemple).

    Pour cela, il suffit de faire apparaître les multiples de 2pi et de "simplifier" (car rajouter 2pi à un angle, c'est faire un tour du cercle trigo et tu reviens à ton angle initial).
    A partir de ton exemple :
    -35*pi/2 = (-36+1)*pi/2 = -36*pi/2 + pi/2 = -9*2pi + pi/2
    La partie en italique est un multiple de 2pi, il te reste alors la partie en gras qui correspond à la mesure principale.

    Est-ce clair ?

    Duke.

  7. #6
    invitecc79f7ac

    Question Re : Trigonometrie : mesure principale

    D'après les différentes méthodes pour calculer cette mesure principale, quelle est la plus rapide pour calculer par exemple (un angle assez élevé) 125pi/3 ?


  8. #7
    invited7005a5b

    Re : Trigonometrie : mesure principale

    C'est tres simple ;essaye de decomposer 125 en multiple de 3;par exemple 125=126-1, donc 125pi/3=126Pi/3-Pi/3=2(20pi)-pi/3;
    et tu ajoutes donc 2pi a -pi/3 tu trouves 4pi/3

  9. #8
    danyvio

    Re : Trigonometrie : mesure principale

    Citation Envoyé par Sephiroth_ange Voir le message
    Quelqu'un pourrait m'expliquer comment calculer la mesure principale d'un angle en radian?
    Je prend l'exemple de -35 pie / 2

    merci d'avance.
    En contradiction avec diverses réponses, je pense que la mesure principale d'un angle est sa valeur comprise dans un des intervalles suivants :

    [0 Pi] ou [ -Pi 0 ] (désolé, mais j'ai des soucis avec Latex ce matin !)

    Elle exprime le plus court chemin sur le cercle trigonométrique entre le point 0 et le point de l'angle considéré.
    Ainsi un angle de 3 Pi / 2 aura pour mesure principale - pi/2

    Par exception, un angle de exactement Pi radians (à 2k Pi près) aura une mesure principale exprimée indiféremment comme Pi ou -Pi

    Pour calculer (à partie d'un angle positif) , il faut donc soustraire autant de fois 2.Pi que possible, et apprécier le reste R
    Si R compris entre 0 et Pi : c'est bon
    Si R compris entre Pi et 2Pi (exclu) faire R = R - 2 Pi

    35 Pi /2 = 2*8 Pi + 3/2 Pi vaut en mesure principale - Pi / 2

    Pour un angle négatif au départ, faire le calcul sur la valeur absoulue et procéder comme ci dessus, en finissant par inverser le signe.
    On trouve des chercheurs qui cherchent ; on cherche des chercheurs qui trouvent !

  10. #9
    Duke Alchemist

    Re : Trigonometrie : mesure principale

    Bonjour.

    En effet comme le signale danyvio, la mesure principale serait plutôt dans [-pi ; pi] avec les détails apportés par ces propres soins concernant pi...

    Désolé pour la boulette.

    Duke.

  11. #10
    invite059dd006

    Re : Trigonometrie : mesure principale

    Bonjour,
    Dites si j'ai 857°, comment puis-je trouver la ''mesure'' principale?
    Merci!

  12. #11
    invitea3eb043e

    Re : Trigonometrie : mesure principale

    Tu enlèves 360° et tu recommences jusqu'à tomber entre 0 et 360°. Ca revient à calculer le reste de la division euclidienne par 360.

  13. #12
    invite4ff70a1c

    Re : Trigonometrie : mesure principale

    Salut.
    Une méthode générale ?
    .On ajoute 35pi/2 aux membres et
    .On divise les membres par 2pi et
    . k,étant un entier relatif ,ne peut qu'etre égal à 9 donc ta mesure principale est .
    Sauf erreur.

  14. #13
    Duke Alchemist

    Re : Trigonometrie : mesure principale

    Bonsoir.

    @sammy93 : ta réponse est pour une discussion qui date de novembre 2006...

    C'est l'inconvénient de rouvrir d'anciennes (voire très anciennes) discussions

    Duke.

Discussions similaires

  1. Analyse en composante principale
    Par invited6089c2f dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 26/04/2007, 10h58
  2. comment avoir la mesure principale d'un angle ?
    Par invite13d2b736 dans le forum Mathématiques du supérieur
    Réponses: 9
    Dernier message: 19/01/2005, 13h35