[TS] Inégalités (racines)
Répondre à la discussion
Affichage des résultats 1 à 4 sur 4

[TS] Inégalités (racines)



  1. #1
    invite72ea9d3f

    [TS] Inégalités (racines)


    ------

    Bonjour,

    Un problème d'inégalités !

    Pour tout t de [0;1[, je dois montrer que (racine de (1-t)) <(racine de (1-t2)) < (racine de (1+t)).
    J'utilise la méthode de la différence avec les deux premiers puis les deux derniers termes, mais je bloque.
    Avec un tableau de signe séparé en trois lignes, une pour le signe du premier terme, une pour celui du second et le dernier pour celui de d(t), comment faire ? Ou sinon, que faire d'autre ? La dérivée de la différence ne semble pas plus avancer.
    La fatigue ?

    -----

  2. #2
    invite88ef51f0

    Re : [TS] Inégalités (racines)

    Salut,
    Pour t€[0,1[ que peux-tu dire de 1-t² par rapport à 1 ? de 1+t par rapport à 1 ?

  3. #3
    invite72ea9d3f

    Re : [TS] Inégalités (racines)

    Qu'ils sont supérieurs à 0 quel que soit t. Mais dans ce cas... je ne sais plus comment mettre en forme la conclusion. ^^"
    Si le premier terme est toujours supérieur à 0 (dans cet intervalle) et que le second également, si l'on soustrait le second au premier, c'est supérieur à 0 ? J'ai oublié la règle, et rien à faire, je n'arrive pas à réfléchir.

  4. #4
    invite72ea9d3f

    Re : [TS] Inégalités (racines)

    Pardon ! Je viens de réussir à me souvenir des règles d'addition et de soustractions d'inégalités.^^"
    Merci et désolé. ^^"

  5. A voir en vidéo sur Futura

Discussions similaires

  1. propriété des inégalités
    Par invite21805292 dans le forum Mathématiques du collège et du lycée
    Réponses: 1
    Dernier message: 10/12/2006, 18h11
  2. Inégalités -
    Par invite636e0538 dans le forum Mathématiques du supérieur
    Réponses: 7
    Dernier message: 27/09/2006, 09h09
  3. inégalités généralisées
    Par invite348ff59e dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 09/08/2006, 16h15
  4. Olympiades: Inégalités
    Par inviteaccddcbd dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 16/02/2006, 20h14
  5. DM TS démontrer inégalités
    Par invite819e2e55 dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 03/11/2005, 23h07