Répondre à la discussion
Affichage des résultats 1 à 12 sur 12

Limite avec x et a



  1. #1
    mathss92

    Lightbulb Limite avec x et a


    ------

    salut tout le monde
    je viens de me bloquer j'ai trouvé cette limite :
    lim ((a+x^n)²-a²)/x^n
    sachant je dois la calculer en cas :
    * x===>0
    * x===> +oo
    je me suis troublé j'ai vu a et x , j'arrive pas même à développer ((a+x^n)²-a²)/x^n
    Merci d'avance

    -----

  2. Publicité
  3. #2
    God's Breath

    Re : Limite avec x et a

    Citation Envoyé par mathss92 Voir le message
    salut tout le monde
    je viens de me bloquer j'ai trouvé cette limite :
    lim ((a+x^n)2-a2)/x^n
    sachant je dois la calculer en cas :
    * x===>0
    * x===> +oo
    je me suis troublé j'ai vu a et x , j'arrive pas même à développer ((a+x^n)2-a2)/x^n
    Merci d'avance
    Commençons par faire simple : peux-tu utiliser une identité remarquable pour factoriser ?

  4. #3
    mathss92

    Re : Limite avec x et a

    Citation Envoyé par God's Breath Voir le message
    Commençons par faire simple : peux-tu utiliser une identité remarquable pour factoriser ?
    oui merci , je ne sais pas par quoi je vais factoriser

  5. #4
    Gwyddon

    Re : Limite avec x et a

    Hello,

    Fais nous la liste des identités remarquables que tu connais.
    A quitté FuturaSciences. Merci de ne PAS me contacter par MP.

  6. A voir en vidéo sur Futura
  7. #5
    mathss92

    Re : Limite avec x et a

    Citation Envoyé par Gwyddon Voir le message
    Hello,

    Fais nous la liste des identités remarquables que tu connais.
    Limite d' une somme Si limite f(x)= L L L +infini -infini +infini
    et limite g(x)= L' +infini -infini +infini -infini -infini
    alors limite (f + g)(x)= L+L' +infini -infini +infini -infini ?

    ç ça ??

  8. #6
    Gwyddon

    Re : Limite avec x et a

    Pas du tout

    Je t'ai parlé des identités remarquables, c'est-à-dire des identités de factorisation que tu apprends au collège :

    a2- b2 = ?
    (a+b)2= ?
    (a-b)2=?
    A quitté FuturaSciences. Merci de ne PAS me contacter par MP.

  9. Publicité
  10. #7
    MiMoiMolette

    Re : Limite avec x et a

    Plop/re/salut/bonsoir,

    Un problème qui semble récurrent chez toi, c'est : "quelles sont les formes indéterminées des limites ?"

    Sont indéterminées les formes suivantes :









    Il me semble qu'il y en a une autre, mais le temps que je la retrouve...ça n'a pas d'utilité.

    Et une erreur fréquente est de penser que est une forme indéterminée, alors que la limite est 0.

    Donc il faudra user de tous les artifices possibles (factorisation, identité remarquable, simplification du dénominateur, ...) pour lever ces indéterminations
    - Je peux pas, j'ai cours
    - Vous n'êtes pas un peu vieux ?
    - Je suis le prof

  11. #8
    mathss92

    Re : Limite avec x et a

    en cas de +oo
    j'ai posé que h=x^n
    donc h====>0
    lim=lim(a+h)²/h=lim(a+h-a)(a+h+a)/h
    =lim h(2a+h)/h
    =lim 2a+h

    puis -je dire lim2a+h=2a ???

  12. #9
    Gwyddon

    Re : Limite avec x et a

    Euh là tu as fait pour h tendant vers zéro, on est d'accord...

    Sinon oui c'est juste.
    A quitté FuturaSciences. Merci de ne PAS me contacter par MP.

  13. #10
    mathss92

    Re : Limite avec x et a

    oui merci à vous j'ai compris bien la méthode ,
    une autre limite je l'ai trouvé
    lim x^n /(2x²-1) x==>-oo
    je vais la développer ou poser quelque chose ??
    Merci

  14. #11
    Gwyddon

    Re : Limite avec x et a

    Hello,

    Ça va dépendre de l'entier n ; pour cela mets en facteur x2 au dénominateur
    A quitté FuturaSciences. Merci de ne PAS me contacter par MP.

  15. #12
    mathss92

    Re : Limite avec x et a

    oui merci à vous j'ai compris bien la méthode ,
    une autre limite je l'ai trouvé
    lim x^n /(2x²-1) x==>-oo
    je vais la développer ou poser quelque chose ??
    Merci

  16. Publicité

Discussions similaires

  1. limite avec exponentielle.
    Par neokiller007 dans le forum Mathématiques du collège et du lycée
    Réponses: 3
    Dernier message: 09/12/2007, 12h34
  2. limite (avec ln)
    Par Xandeur dans le forum Mathématiques du collège et du lycée
    Réponses: 5
    Dernier message: 03/05/2006, 20h32
  3. Limite avec le nombre dérivée
    Par sonia57 dans le forum Mathématiques du collège et du lycée
    Réponses: 5
    Dernier message: 09/04/2006, 12h28
  4. Problème avec une limite
    Par Onizuka13 dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 25/12/2005, 17h08
  5. Probléme avec une limite
    Par ios dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 06/10/2005, 20h59