Répondre à la discussion
Affichage des résultats 1 à 15 sur 15

Pourquoi ne peut-on pas comparer deux nombres complexes ?



  1. #1
    Iris19

    Pourquoi ne peut-on pas comparer deux nombres complexes ?


    ------

    Bonjour,

    Tout est dans le titre ! Je me pose cette question car pour moi, à vue de nez, i < 2i par exemple.

    Merci d'avance !

    -----

  2. Publicité
  3. 📣 Nouveau projet éditorial de Futura
    🔥🧠 Le Mag Futura est lancé, découvrez notre 1er magazine papier

    Une belle revue de plus de 200 pages et 4 dossiers scientifiques pour tout comprendre à la science qui fera le futur. Nous avons besoin de vous 🙏 pour nous aider à le lancer...

    👉 Je découvre le projet

    Quatre questions à explorer en 2022 :
    → Quels mystères nous cache encore la Lune 🌙 ?
    → Pourra-t-on bientôt tout guérir grâce aux gènes 👩‍⚕️?
    → Comment nourrir le monde sans le détruire 🌍 ?
    → L’intelligence artificielle peut-elle devenir vraiment intelligente 🤖 ?
  4. #2
    Plume d'Oeuf

    Re : Pourquoi ne peut-on pas comparer deux nombres complexes ?

    Bonjour,

    Ce n'est pas aussi évident. Les nombres complexes par définition sont des nombres qui n'ont pas de réalité physique. Autrement dit ils ne sont là que pour résoudre des équations, ou pour faciliter des caculs, mais ne représentent rien de concret.

    Prenons un exemple. Peux tu comparer ces deux nombres: 4+7i et 12-3i?

    Concernant i et 2i, il n'y a rien d'évident à ce que l'un soit plus petit que l'autre. i est défini comme étant la racine carrée (imaginaire) de (-1), ce qui n'a pas de sens physique. Comment dans ces conditions être capable de dire que l'un est plus petit/plus grand que l'autre?

    De plus pour pouvoir dire que i<2i, il faudrait admettre que i soit positif. Or i étant défini comme quelque chose de physiquement impossible, la notion de positif/négatif est difficile à envisager.

  5. #3
    danyvio

    Re : Pourquoi ne peut-on pas comparer deux nombres complexes ?

    Tout au plus pourrait-on comparer les modules de deux nombres complexes, mais pas les complexes eux-mêmes.
    On trouve des chercheurs qui cherchent ; on cherche des chercheurs qui trouvent !

  6. #4
    Plume d'Oeuf

    Re : Pourquoi ne peut-on pas comparer deux nombres complexes ?

    Re-Bonjour.

    J'ai oublié de préciser qu'un nombre complexe peut être vu comme un couple de nombres réels.

    Or comment dire qu'un couple est supérieur à un autre? On pourrait chercher la norme algébrique de ce couple, ce qui donnerait éventuellement un moyen de comparaison, mais ne serait pas suffisant:

    Les couples (-1;-1) et (1,1) ont la même norme, égale à racine de 2, mais ne sont pas les mêmes couples pour autant.

    Bon courage!

  7. A voir en vidéo sur Futura
  8. #5
    Iris19

    Re : Pourquoi ne peut-on pas comparer deux nombres complexes ?

    Merci vous deux, c'est bien plus clair maintenant !

    Enfin, reste à comprendre l'utilité de travailler sur des nombres n'ayant aucun sens physique.. Y a-t-il des applications aux nombres complexes, enfin je veux dire, pourquoi ont-ils été inventés à l'origine ?

  9. #6
    ansset
    Animateur Mathématiques

    Re : Pourquoi ne peut-on pas comparer deux nombres complexes ?

    parcequ'ils sont très pratiques dans tout ce qui est ondulatoire.

    on peut les decrire comme deux réels, mais leurs utilité est surtout dans les cycles périodiques.

    ainsi au lieu d'écrire
    z = a + bi on peut ecrire
    z = !z! ( cos(argz) + sin(argz)*i)

    ou même

    z=!z!e^(i(theta)) theta=arg(z) bien sur

    les calculs sont beaucoup plus simples
    par exemple
    en multipliant 2 complexes ,
    il suffit de multiplier les modules et d'additionner les angles !!

    elle est pas belle la vie ?

  10. Publicité
  11. #7
    erik

    Re : Pourquoi ne peut-on pas comparer deux nombres complexes ?

    Les nombres complexes par définition sont des nombres qui n'ont pas de réalité physique.
    Le problème n'est pas là, on peut montrer que si on définit z1>z2 alors on a pas forcément z1+a>z2+a, ce qui est un poil embétant pour une relation d'ordre.

    Le fait que les complexes "sont des nombres qui n'ont pas de réalité physique." n'a rien à voir, les maths ne travaillent pas avec des objets ayant une réalité physique.

  12. #8
    Plume d'Oeuf

    Re : Pourquoi ne peut-on pas comparer deux nombres complexes ?

    A erik:
    En effet! Ne connaissant pas la preuve théorique, j'essayais juste de faire passer le concept.



    A Iris19:
    Comme l'a dit erik, les mathématiciens ne s'embêtent pas à considérer la réalité physique des choses pour travailler.

    A l'origine les nombres complexes ont été introduits sous le nom de nombres impossibles pour trouver toutes les racines des polynômes d'ordre 3, de la forme x3+ax2+bx+c, où a, b et c sont des réels.

    On peut montrer assez facilement que la recherche des racines d'un tel polynôme passe par la recherche des racines d'un polynôme d'ordre 2 (formules de Cardan).



    Considérons le trinôme: ax2+bx+c avec a,b et c réels, a non nul. Cherchons ses racines.

    On pose:




    En passant sous forme canonique, on obtient:


    Ce qui équivaut à:



    Soit, en posant :

    (E):


    Si est positif ou nul, il est facile de montrer que des solutions réelles existent.


    Si maintenant est négatif, on se retrouve dans le cas où un carré est négatif: IMPOSSIBLE me direz vous!

    Ce, jusqu'à ce qu'un certain monsieur Bombelli dise (en italien): et si on supposait qu'il existait un nombre, imaginaire, dont le carré serait -1!!! Notons ce nombre .

    Alors (E) admet deux nouvelles solutions imaginaires quand <0:





    De là sont nés les "nombres impossibles" comme les a appelés Bombelli. Ce n'est que plus tard qu'Euler les a rebaptisés nombres complexes et a changé la notation en i, parce que l'application des lois s'appliquant à la racine posaient problème.

    Aujourd'hui, les nombres complexes sont très démocratisés, et utilisés en mécanique ondulatoire, en traitement du signal, pour simplifier des équations différentielles,... L'aspect géométrique des nombres complexes est aussi un outil très puissant.


    Sources (entre autres):
    http://homeomath.imingo.net/cardan.htm
    http://pagesperso-orange.fr/gilles.c...ers/cplx03.pdf
    http://fr.wikipedia.org/wiki/Nombre_complexe
    http://ddata.over-blog.com/xxxyyy/2/...impossible.pdf
    http://prof.pantaloni.free.fr/IMG/pd..._cplx_2007.pdf


    NB: j'ai fait ce petit travail de recherche quelques jours auparavant

    Bonne continuation!
    Dernière modification par Plume d'Oeuf ; 17/04/2010 à 19h39.

  13. #9
    Médiat

    Re : Pourquoi ne peut-on pas comparer deux nombres complexes ?

    Bonjour,
    Citation Envoyé par Iris19 Voir le message
    Tout est dans le titre ! Je me pose cette question car pour moi, à vue de nez, i < 2i par exemple.
    On peut parfaitement comparer deux nombres complexes, c'est à dire définir une relation d'ordre sur cet ensemble.
    Il y a même un tas d'exemples : ordre lexicographique sur (partie réelle, partie imaginaire) ou sur (Module, Argument) (avec argument entre 0 inclu et 2 pi exclu).

    L'inconvénient de ces relations d'ordres c'est qu'elles ne sont pas compatibles avec la structure de corps (pour l'addition et la multplication par un nombre plus grand que 0).

    Il y a un autre exemple intéressant, car compatible avec la structure de corps :
    a + ib <= x + iy si et seulement si b = y et a <= x.

    Mais l'inconvénient de cette relation d'ordre c'est qu'elle n'est pas totale.

    Citation Envoyé par Théorème
    Le corps des nombres complexes ne peut pas être muni d'une relation d'ordre totale compatible avec sa structure de corps.
    Je suis Charlie.
    J'affirme péremptoirement que toute affirmation péremptoire est fausse

  14. #10
    Iris19

    Re : Pourquoi ne peut-on pas comparer deux nombres complexes ?

    Bonjour,

    Désolée de cette réponse tardive - plus de connexion Internet - mais je tenais à vous remercier pour toutes vos réponses. J'ai compris.

    Bonne journée !

  15. #11
    Mikihisa

    Re : Pourquoi ne peut-on pas comparer deux nombres complexes ?

    Bon j'ai delete tout mon blabla, c'est juste ce que viens de dire mon prédécesseur.
    Dernière modification par Mikihisa ; 22/04/2010 à 00h22.

  16. #12
    Mikihisa

    Re : Pourquoi ne peut-on pas comparer deux nombres complexes ?

    Le fait qu'un ordre ne soit pas compatible avec la structure de corps, cela signifie que l'on a pas les propriété classique style a<b => a+c<b+c où ce genre de chose.

    Un ordre est total si 2 éléments sont toujours comparables.

    Le problème de C viens evidemment du fait que les ordre précité sont totalement arbitraire. Pourquoi Re en premier et pas Im etc...

    Sur R c'est facile à se représenté. Plus c'est proche de 0, plus c'est grand coté négatif, et coté positif plus c'est loin, plus c'est grand. La aussi d'ailleurs ya quelque chose d'arbitraire, c'est le moins le plus petit. Difficile de le justifié puisque si on retourne la droite, tous change. Mais ca reste potable encore. Comme l'histoire de la racine carré. On aurrais pu la définir uniquement pour les nombre négatif, c'est totalement arbitraire d'avoir choisit les positifs.

    Dans C, on est dans le plan, donc ca se complique, ya trop d'ambiguité.

  17. Publicité
  18. #13
    Plume d'Oeuf

    Re : Pourquoi ne peut-on pas comparer deux nombres complexes ?

    Citation Envoyé par Mikihisa Voir le message
    Comme l'histoire de la racine carré. On aurrais pu la définir uniquement pour les nombre négatif, c'est totalement arbitraire d'avoir choisit les positifs.
    Bonjour,

    Je ne suis pas tout à fait d'accord avec cela. Tout nombre multiplié par lui même donne un nombre positif; il est donc tout à fait légitime d'avoir défini dans un premier temps la fonction racine carrée sur R+.

    Ce qu'on pouvait discuter par contre c'éttait la règle des signes, avec + par - donne - , ou encore - par - donne + ... quoiqu'elle soit aujourd'hui établie comme théorème grâce à l'usage des anneaux.

    Maintenant définir la racine carrée sur les négatifs était plutôt osé, puisqu'il s'agissait de mettre en œuvre des nombres n'ayant plus d'autre existence que mathématique, dans le seul but de trouver des solutions "impossibles" aux équations non solvables sur R.

    C'est le côté "arbitraire" qui me gênait

  19. #14
    Mikihisa

    Re : Pourquoi ne peut-on pas comparer deux nombres complexes ?

    Oui tu as raison c'étais parfaitement légitime.
    Mais je sais que, dans ma tendre enfance j'avais buter sur la regle du "une racine carré est positive" étant au collège.

    Parceque pour moi, si la racine carré donnais le nombre qui élevé au carré donne 2, alors -2 est parfaitement racine carré de 4 =).

    Mais bon, j'étais pas très normal dans mon enfance ...

  20. #15
    Plume d'Oeuf

    Re : Pourquoi ne peut-on pas comparer deux nombres complexes ?

    Je ne vois pas où est le problème: -2 est bien une racine de 4!

    Par contre il était dingue avant Bombelli de chercher la racine carrée d'un nombre négatif. Ne pas confondre ensemble de définition et ensemble image...

Discussions similaires

  1. Comparer deux nombres
    Par jeremymaths dans le forum Mathématiques du collège et du lycée
    Réponses: 12
    Dernier message: 01/01/2010, 09h27
  2. Comparer deux nombres
    Par pc..maths dans le forum Mathématiques du collège et du lycée
    Réponses: 6
    Dernier message: 09/11/2008, 17h13
  3. [TS]Deux petites question sur les nombres complexes
    Par Moltinou dans le forum Mathématiques du collège et du lycée
    Réponses: 20
    Dernier message: 05/11/2006, 18h44
  4. Complexes : prouver que deux nombres sont distincts
    Par ccslt dans le forum Mathématiques du collège et du lycée
    Réponses: 8
    Dernier message: 19/09/2006, 21h23
  5. peut etre facile ... geom nombres complexes
    Par ipodishima dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 29/12/2005, 16h06