signe de Ln(a)
Répondre à la discussion
Affichage des résultats 1 à 16 sur 16

signe de Ln(a)



  1. #1
    invite2713d81e

    signe de Ln(a)


    ------

    Bonsoir

    J'ai un blocage pour répondre à cet question pourriez vous me guider s'il vous plait?

    Soit a un réel. Etudier, suivant les valeurs de a, le signe de Ln(a)

    Je ne vois pas comment faire

    -----

  2. #2
    invite51d17075
    Animateur Mathématiques

    Re : signe de Ln(a)

    bonjour,
    et en quelle classe es-tu ?
    si on te pose la question ,c'est que tu as déjà entendu de Ln(x) , non ?

  3. #3
    invite2713d81e

    Re : signe de Ln(a)

    j'en ai déja entendu parler certes mais je ne sais pas comment faire

  4. #4
    invite51d17075
    Animateur Mathématiques

    Re : signe de Ln(a)

    connais tu la fonction e(x) ?

  5. A voir en vidéo sur Futura
  6. #5
    invite2713d81e

    Re : signe de Ln(a)

    oui la fonction e(x) est définie sur 0;+00
    mais excusez moi pourriez vous me donner une base concrète qui me permettrait de réellement commencer mon exercice s'il vous plait. Je vous passe les scènes mélodramatiques mais j'avoue que je dois rendre cet exercice demain

  7. #6
    invite2713d81e

    Re : signe de Ln(a)

    donc par ou dois je commencer au final ?

  8. #7
    zyket

    Re : signe de Ln(a)

    Bonjour,

    sans vouloir faire les rabats-joie, il faut commencer par ouvrir ton cours, ton manuel de math et trouver dans quel chapitre tu peux trouver la courbe représentative de la fonction Ln. Je pense qu'avec la courbe sous les yeux nous pourrons mieux discuter.

  9. #8
    inviteaf48d29f

    Re : signe de Ln(a)

    Je ne suis pas d'accord Zyket. La courbe représentative n'a pas de valeur de preuve, l'exercice se résout algébriquement uniquement en faisant appel à la définition de ln.

    Ce dont vous avez besoin pour commencer c'est de connaitre la définition de la fonction logarithme, et pour ça vous avez besoin de votre cours. Petit rappel de cours, ln est la fonction réciproque de la fonction exponentielle.
    Ainsi dire que ln(a)=b revient à dire que a=exp(b). Comment pouvez vous utiliser ceci pour étudier le signe de ce que je viens de nommer b ?

  10. #9
    zyket

    Re : signe de Ln(a)

    Pour topcase, tu oublies tout ce que je t'ai dit et tu suis les conseils de S321 (à S321 sans ironie aucune)

  11. #10
    invite51d17075
    Animateur Mathématiques

    Re : signe de Ln(a)

    Citation Envoyé par S321 Voir le message
    Je ne suis pas d'accord Zyket. La courbe représentative n'a pas de valeur de preuve, l'exercice se résout algébriquement uniquement en faisant appel à la définition de ln.

    Ce dont vous avez besoin pour commencer c'est de connaitre la définition de la fonction logarithme, et pour ça vous avez besoin de votre cours. Petit rappel de cours, ln est la fonction réciproque de la fonction exponentielle.
    Ainsi dire que ln(a)=b revient à dire que a=exp(b)
    . Comment pouvez vous utiliser ceci pour étudier le signe de ce que je viens de nommer b ?
    salut S321,
    j'ai justement essayé de l'orienter aussi dans cette voie mais visiblement sans succès !

  12. #11
    inviteaf48d29f

    Re : signe de Ln(a)

    Citation Envoyé par ansset Voir le message
    salut S321,
    j'ai justement essayé de l'orienter aussi dans cette voie mais visiblement sans succès !
    Je sais bien, mais au bout d'un moment à part répéter les mêmes choses avec des mots différents il n'y a pas grand chose qu'on puisse faire. Nous ne pouvons pas valoir un prof de maths en chair et en os.

    Pour topcase, tu oublies tout ce que je t'ai dit et tu suis les conseils de S321 (à S321 sans ironie aucune)
    Je tiens à préciser que tes interventions sont tout de même largement appréciables. Tes connaissances en maths n'ont peut être pas (encore) l'extension de celles d'un enseignant, mais tes conseils s'avèrent en général assez pertinents. De toutes façons, au pire, je veille au grain ^^.

  13. #12
    invite51d17075
    Animateur Mathématiques

    Re : signe de Ln(a)

    j'essaye une autre piste pour topcase.
    tu dois certainement savoir que Ln(a*b)=Ln(a)+Ln(b) .
    de la même manière Ln(a/b)=Ln(a)-Ln(b)
    pour commencer, écris simplement a=a*1 et applique la fonction Ln des deux cotés de l'égalité, que trouves-tu ?

  14. #13
    invite51d17075
    Animateur Mathématiques

    Re : signe de Ln(a)

    ensuite ( je l'ai dans vu un autre exercice ) que tu connais un peu les dérivées.
    connais tu celle de la fonction Ln ?
    si tu me reponds au deux questions dans un même post, on gagnera du temps.
    a bientôt.

  15. #14
    danyvio

    Re : signe de Ln(a)

    Scrongneugneu, ln(1) vaut 0 (si tu ne le sais pas, aïe aïe aïe...) Ensuite distinguer ce qu'il y a entre 0 et 1 d'une part, et au delà de 1 ..... J'ai résisté avant de poster, mais effectivement il faut ouvrir le bouqun de cours
    On trouve des chercheurs qui cherchent ; on cherche des chercheurs qui trouvent !

  16. #15
    zyket

    Re : signe de Ln(a)

    Non non danyvio, moi aussi je croyais qu'il fallait que topcase ouvre son cours. Mais je crois réaliser que justement topcase aborde les logarithmes. Et tout ce que nous savons et ce que doit savoir un élève pour le bac est à oublier ici. Topcase ne sait encore qu'une chose : c'est manipuler les exponentielles.

    Pour connaître le signe de Ln(a) en fonction de a, topcase doit donc résoudre les inéquations Ln(a)<=0 et Ln(a)>0, en se servant des propriétés de la fonction exponentielle et d'une règle de calcul a=exp(Ln(a)) comme indiquée par anssett.
    Mais qu'il est difficile de mettre sur la voie sans donner la réponse.

  17. #16
    invite51d17075
    Animateur Mathématiques

    Re : signe de Ln(a)

    Citation Envoyé par zyket Voir le message
    Pour connaître le signe de Ln(a) en fonction de a, topcase doit donc résoudre les inéquations Ln(a)<=0 et Ln(a)>0, en se servant des propriétés de la fonction exponentielle et d'une règle de calcul a=exp(Ln(a)) comme indiquée par anssett.
    Mais qu'il est difficile de mettre sur la voie sans donner la réponse.
    ben on peut essayer sans aller jusqu'au bout.
    topcase :
    si tu comprend que x=exp(ln(x)).
    si tu dérivepr des deux coté, tu verra un ln'(x) apparaitre qui te donnera le sens de variation.
    ( j'espère ne pas trop aider ?

    ps : attention aussi au domaine de définitionde ln(x)
    si x=exp(ln(x)) alors x est forcement > 0car exp(a)>0 toujours

Discussions similaires

  1. Échange du signe limite et du signe somme
    Par invite2103f7d3 dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 08/05/2011, 16h24
  2. Signe
    Par inviteea8ef274 dans le forum Physique
    Réponses: 1
    Dernier message: 01/10/2010, 14h09
  3. signe
    Par invite3dbe3e1c dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 18/03/2009, 19h31
  4. signe
    Par invite13e0016f dans le forum Mathématiques du supérieur
    Réponses: 7
    Dernier message: 22/12/2008, 23h02
  5. [Divers] Différence signe biologique/ signe clinique ?
    Par invite50fe2559 dans le forum Biologie
    Réponses: 0
    Dernier message: 13/05/2008, 13h53