Probleme de maths : Construire une rampe ( dérivées )
Répondre à la discussion
Affichage des résultats 1 à 2 sur 2

Probleme de maths : Construire une rampe ( dérivées )



  1. #1
    invitefbf74aee

    Probleme de maths : Construire une rampe ( dérivées )


    ------

    Bonjour à tous !
    J'ai eu un Devoir maison à faire lors de mes vacances, et j'ai bien compris les premières questions. Malheureusement, je bloque à partir de la question 4, et je recherche donc un peu d'aide (:
    Merci d'avance !

    Exercice :
    Une usine de produits chimiques dangereux souhaite faire construire une rampe inclinée en pente douce permettant à des chariots de franchir un dénivelé de 1m entre le sol et un quai.
    Pour d'évidentes raisons de sécurité, cette rampe devra être tangente au sol au point A et tangente en B au niveau du sol du quai.
    O est le projeté orthogonal de B sur le sol. Pour faciliter votre étude, on exprimera les coordonnées des points et les équations des courbes dans le repère orthonormal direct (O , C , B).
    Dans un premier projet, on prévoit une emprise au sol de 2m, c'est à dire: OA = 2
    1) Une rampe rectiligne peut-elle convenir? Pourquoi?
    Une rampe formée d'une ligne brisée peut-elle convenir? Pourquoi?
    2) Une rampe formée d'un arc de parabole peut-elle convenir? Pourquoi?
    3) Une rampe formée d'un arc de cercle peut-elle convenir? Pourquoi?
    4) Montrer qu'on peut trouver une solution formée de deux arcs de parabole de sommets respectifs A et B se raccordant en étant tangents en un point I d'abscisse 1. Donner les équations des deux paraboles trouvées.
    Vérifier que la pente maximum de cette rampe est obtenue au point I. Quelle est cette pente?
    5) On décide de donner à la rampe un profil d'équation :
    y = ax3 + bx² + cx + d
    Déterminer les réels a, b, c et d donnant la solution du problème. Quelle est la pente maximum de la rampe? En quel point l'obtient-on?

    Mes réponses :

    1) Non, elle ne conviendrait pas car la droite passant par A et B a pour coefficient directeur -0.5. Les dérivées en 0 ( abcisse de B ) et 2 (abcisse de A ) ne seraient donc pas nul.
    2)et 3) Non car il faudrait que deux points est une dérivée nul, ce qui est impossible pour une parabole comme pour un arc de cercle.
    4) C'est à cette question que je bloque ... J'ai juste dis que :
    Pour la parabole passant par B, on a :
    f(x)=ax²+bx+c
    f(0)=1=a*0+b*0+c Donc c=0

    Ensuite, comme B est le sommet, la dérivée doit être nulle soit :
    f'(0)=0
    a*2*0+b=0
    b=0

    Je ne vois pas comment trouver a par la suite, ni comment réussir à trouver l'équation pour la parabole passant par A ...

    Merci donc de votre aide !

    -----

  2. #2
    invite9278ba86

    Re : Probleme de maths : Construire une rampe ( dérivées )

    Bonsoir

    L'équation générale de la parabole de sommet A est de la forme g(x) = a'(x-2)2+b'(x-2)+c'

Discussions similaires

  1. Générer une rampe
    Par Anduriel dans le forum Électronique
    Réponses: 1
    Dernier message: 03/06/2011, 12h03
  2. construire une rampe sous simulink
    Par invitec35bc9ea dans le forum Mathématiques du supérieur
    Réponses: 0
    Dernier message: 12/04/2008, 13h30
  3. Problème de Maths 1ere Tle Dérivées
    Par invitecf441b46 dans le forum Mathématiques du collège et du lycée
    Réponses: 1
    Dernier message: 19/12/2007, 18h46
  4. une rampe pour une LED
    Par invite55ac9d8c dans le forum Électronique
    Réponses: 9
    Dernier message: 07/12/2007, 20h37