Aire d'un quadrilatère quelconque
Répondre à la discussion
Affichage des résultats 1 à 25 sur 25

Aire d'un quadrilatère quelconque



  1. #1
    invitec9722d5c

    Aire d'un quadrilatère quelconque


    ------

    Bonjour,

    J'aimerais savoir s'il est possible de calculer l'aire d'un quadrilatère quelconque en connaissant uniquement les longueurs de ses 4 cotés.

    Merci beaucoup

    -----

  2. #2
    danyvio

    Re : aire d'un quadrilatère quelconque

    Ce n'est pas possible, car un quadrilatère quelconque est "déformable", et selon qu'il est aplati (aire=0) ou non, son aire varie... Dans ton cas il faut connaître, en plus des côtés, la mesure d'un angle.
    On trouve des chercheurs qui cherchent ; on cherche des chercheurs qui trouvent !

  3. #3
    danyvio

    Re : aire d'un quadrilatère quelconque

    Citation Envoyé par danyvio Voir le message
    Ce n'est pas possible, car un quadrilatère quelconque est "déformable", et selon qu'il est aplati (aire=0) ou non, son aire varie... Dans ton cas il faut connaître, en plus des côtés, la mesure d'un angle.
    Pardon de me citer. Mais on peut résoudre le problème si, au lieu d'un angle, on connaît une diagonale...
    On trouve des chercheurs qui cherchent ; on cherche des chercheurs qui trouvent !

  4. #4
    inviteea028771

    Re : aire d'un quadrilatère quelconque

    Pardon de me citer. Mais on peut résoudre le problème si, au lieu d'un angle, on connaît une diagonale...
    Ça ne suffit pas.

    Un quadrilatère dont les cotés font :

    AB = 3, BC = 3, CD = racine(5), DA = racine(5) et, au choix ABC = 90° et/ou AC = 3 racine(2) a deux aires possibles :

    - une aire égale à 6 si le quadrilatère est convexe
    - une aire égale à 3 si il ne l'est pas

    De même avec celui là :

    AB = 1, BC = racine(2), CD = 1, DA = racine(2) et AC = 1 et/ou ABC = 45°

    - Une aire égale à 1 si le quadrilatère est convexe (un joli parallélogramme)
    - Une aire égale à 1/2 si le quadrilatère est croisé

  5. A voir en vidéo sur Futura
  6. #5
    invitec9722d5c

    Re : aire d'un quadrilatère quelconque

    Désolé, mais j'avais oublié une donnée importante du problème:
    il s'agit de trouver l'aire *maximale* d'un quadrilatère de cotés a,b,c,d.
    et on peut ajouter non croisé.

    merci d'avance

  7. #6
    danyvio

    Re : aire d'un quadrilatère quelconque

    Citation Envoyé par update222 Voir le message
    Désolé, mais j'avais oublié une donnée importante du problème:
    il s'agit de trouver l'aire *maximale* d'un quadrilatère de cotés a,b,c,d.
    et on peut ajouter non croisé.

    merci d'avance
    Alors il faut trouver l'angle optimal (par exemple ceui qui est adjacent à a et b. Il y a du sinus dans l'air (et même dans l'airE )
    On trouve des chercheurs qui cherchent ; on cherche des chercheurs qui trouvent !

  8. #7
    invitec9722d5c

    Re : aire d'un quadrilatère quelconque

    Sûrement, mais j'ai du mal à trouver la formule donnant la surface à partir des 4 cotés connus et un angle à optimiser.
    je ne connais pas du tout les diagonales.
    Quelqu'un peut m'aider?

  9. #8
    danyvio

    Re : aire d'un quadrilatère quelconque

    Dans ce genre de problème il faut se ramener en général à découper en triangles.

    A partir du moment où tu connais deux côtés adjacents (par ex a et b), tu peux calculer EN FONCTION DE L'ANGLE la diagonale (= le troisième côté du triangle a,b, et ce qui relie les extrêmités de a et b. Il existe une formule pour calculer l'aire de ce triangle. Tu appliques cette même formule au triangle composé de cette même diagonale et des côtés c et d . Additionner les deux formules pour avoir l'aire totale.
    La formule trouvée contiendra l'inconnue "angle séparant a et b". Tu dériveras pour obtenir le mini et le maxi. Et hop c'est plié...
    Dernière modification par danyvio ; 04/03/2012 à 08h39.
    On trouve des chercheurs qui cherchent ; on cherche des chercheurs qui trouvent !

  10. #9
    invitec9722d5c

    Re : aire d'un quadrilatère quelconque

    j'ai les relations:
    S(ABC)=1/2 AB.BC.sin(ABC)
    S(ADC)=1/2 AC.AD.sin(ADC) avec AB,BC,AC,AD les 4 cotés connus
    mais les 2 angles ne sont pas identiques.
    j'ai pour la diagonale:
    AC²=AB²+BC²-2.AB.BC.cos(ABC)
    AC²=AD²+DC²-2.AD.DC.cos(ADC)
    pour la relation donnant ADC en fonction de ABC cela donne une grosse relation en ADC=acos(........cos(ABC)/....)
    au final S(A)=1/2.a.b.sinA+1/2.c.d.sin(acos((a²+b²-2.a.b.cosA)/(d²+c²-2.d.c)))
    y'a pas plus simple à dériver?

  11. #10
    invitec9722d5c

    Re : aire d'un quadrilatère quelconque

    la dérivée de h°g°f c'est quoi ? [h'°(g°f)].(g'°f).f' ?

  12. #11
    danyvio

    Re : aire d'un quadrilatère quelconque

    Autre piste (sans garantie) :

    On prend comme variable cette fameuse diagonale commune aux deux triangles.
    1) elle a un domaine de définition car, comme tout côté d'un triangle elle a une mesure positive entre la somme et la différence des deux autres côtés. Petite difficulté : ce doit être vérifié simultanément pour les deux triangles accolés.

    2) En respectant ci dessus, tu as facilement l'aire des deux triangles accolés (rappel de la formule générale de l'aire d'un triangle connaissant des 3 côtés a,b,c , où p est le demi-périmètre : S= racine carrée de p(p-a)(p-b)(p-c)

    3) on dérive en fonction de la mesure de la diagonale.
    On trouve des chercheurs qui cherchent ; on cherche des chercheurs qui trouvent !

  13. #12
    danyvio

    Re : aire d'un quadrilatère quelconque

    Ce serait sympa de nous indiquer la correction de ce problème.
    On trouve des chercheurs qui cherchent ; on cherche des chercheurs qui trouvent !

  14. #13
    mécano41

    Re : aire d'un quadrilatère quelconque

    Bonjour à tous,

    Lorsque l'on fait déjà le calcul de la position d'un côté en bougeant le côté opposé on arrive déjà à un truc un peu tordu...alors pour la suite...

    Dans l'appli. EXCEL jointe, j'ai mis le calcul indiqué ci-dessus (attention, comme il faut faire un choix de solutions, il est possible que celles que j'ai choisies ne conviennent pas dans tous les cas de figures.


    Ceci permet de déterminer les positions de deux sommets, les deux autres étant fixes. Ensuite, j'ai calculé la surface des deux triangles formés (produit vectoriel divisé par deux) et pour le maxi, j'ai utilisé le solveur (je n'ai pas automatisé donc il faut relancer le solveur à chaque modif des longueurs de côtés)
    En haut à droite, le calcul de alpha pour trois sommets alignés est fait pour donner une limite au solveur ; selon le cas d'impossibilité s'il y a lieu, il faut indiquer la valeur comme alpha maxi ou comme alpha mini.

    Le solveur sort l'angle donc la position des sommets pour l'aire maxi.

    Si UPDATE22 a besoin d'une formule unique, je ne sais pas faire...sinon, cela peut lui servir....


    Cordialement
    Fichiers attachés Fichiers attachés

  15. #14
    mécano41

    Re : aire d'un quadrilatère quelconque

    Bonjour,

    Je mets un nouveau fichier ; la recherche de sin beta et cos beta a été rendue plus claire (le bon quadrant est trouvé automatiquement).
    D'autre part, j'avais inversé la désignation des produits vectoriels par rapport au calcul...

    Ne pas oublier de relancer le solveur à chaque modif. des longueurs des côtés du quadrilatère...ce n'est pas automatique...

    Cordialement
    Fichiers attachés Fichiers attachés

  16. #15
    invitec9722d5c

    Re : aire d'un quadrilatère quelconque

    J'ai trouvé une formule qui marche mais sans démonstration par extension de celle du triangle:

    Soit s=(a+b+c+d)/2 avec a,b,c,d les dimensions des côtés du quadrilatère,

    L'aire maximum du quadrilatère est: A=sqrt((s-a)*(s-b)*(s-c)*(s-d)) où sqrt est la racine carrée.

  17. #16
    invite9549fbc1

    Lightbulb Re : aire d'un quadrilatère quelconque

    Bonjour, je pense qu'il est possible de le calculer en le planchant dans un repère, comme ceci: Nom : image.jpg
Affichages : 4842
Taille : 406,7 Ko

  18. #17
    gg0
    Animateur Mathématiques

    Re : aire d'un quadrilatère quelconque

    1) répondre à un sujet 2 ans et 2 mois après montre qu'on ne sait pas bien lire
    2) D'ailleurs le sujet n'a rien à voir avec cette page d'un ouvrage d'école.

  19. #18
    invite5f119f32

    Re : aire d'un quadrilatère quelconque

    Bonsoir,

    Je suis en 4eme et mon prof de math ma demander de calculer l'air d'un quadrilatere IJKL
    IJ=6.8
    IL=5.1
    JK=6.5
    La mesure de KL je ne la connais pas.
    Vous pouvez m'aider sil vous plait!? Merci pour ceux qu'il répondront

  20. #19
    inviteea028771

    Re : aire d'un quadrilatère quelconque

    Le problème n'a pas de solution : l'aire peut valoir 0 (IJKL alignés) comme plus de 40...

  21. #20
    invite5f119f32

    Re : aire d'un quadrilatère quelconque

    Mercii beaucoup!

  22. #21
    gougougou

    Re : Aire d'un quadrilatère quelconque

    On peut calculer l'aire d'un quadrilatère convexe connaissant les longueurs des 4 côtés et la valeur d'un angle.

    DEMONSTRATION:
    Calcul de l’aire S du quadrilatère convexe ABCD connaissant les longueurs des 4 côtés et la valeur de l’angle DAB notée α

    Comme on le voit sur un dessin l’aire S du quadrilatère est la somme de l’aire S1 du triangle DAB et de l’aire S2 du triangle BCD

    L’aire du triangle DAB est donnée directement par la formule générale Aire = 1/2 (a x b sin α) :
    S1 = 1/2 AB x AD sin α

    Pour calculer l’aire de BCD, on calcule d’abord la longueur du côté BD, qui est également côté du triangle DAB. La formule d’Al Kashi nous donne :
    DB2 = AB2 + AD2 -2AB x AD cos(α)
    Donc DB = Racine (AB2 + AD2 - 2AB x AD cos α )

    Appliquons maintenant la formule consacrée pour le calcul de l’aire S2 du triangle BCD en fonction de la longueur des 3 côtés

    S2 = 1/4 x (Racine( (BC+CD+DB) x (-BC+CD+DB) x (BC-CD+DB) x (BC+CD-DB) )

    En reportant la valeur de DB calculée plus haut:

    S2 = 1/4 x (Racine( (BC+CD+ Racine (AB2 + AD2 -2AB x AD cos α )) x (-BC+CD+ Racine (AB2 + AD2 -2AB x AD cos α )) x (BC-CD+ Racine (AB2 + AD2 -2AB x AD cos α )) x (BC-CD+ Racine (AB2 + AD2 -2AB x AD cos α )) )

    L’aire du quadrilatère ABCD d’angle α en A est S = S1 + S2
    S = S1 = 1/2 AB x AD sin α + 1/4 x (Racine( (BC+CD+ Racine (AB2 + AD2 - 2AB x AD cos α )) x (-BC+CD+ Racine (AB2 + AD2 - 2AB x AD cos α )) x (BC-CD+ Racine (AB2 + AD2 - 2AB x AD cos α )) x (BC-CD+ Racine (AB2 + AD2 - 2AB x AD cos α )) )

    Salutations
    Gougougou
    Dernière modification par gougougou ; 15/12/2016 à 10h52.

  23. #22
    gougougou

    Re : Aire d'un quadrilatère quelconque

    On peut calculer l'aire d'un quadrilatère convexe connaissant les longueurs de côtés et un angle.

    DEMONSTRATION:
    Calcul de l’aire S du quadrilatère convexe ABCD connaissant les longueurs des 4 côtés et la valeur de l’angle DAB notée α

    Comme on le voit sur un dessin l’aire S du quadrilatère est la somme de l’aire S1 du triangle DAB et de l’aire S2 du triangle BCD

    L’aire du triangle DAB est donnée directement par la formule générale Aire = 1/2 (a x b sin α :
    S1 = 1/2 AB x AD sin α

    Pour calculer l’aire de BCD, on calcule d’abord la longueur du côté BD, qui est également côté du triangle DAB. La formule d’Al Kashi nous donne :
    DB2 = AB2 + AD2 -2AB x AD cos(α)
    Donc DB = Racine (AB2 + AD2 - 2AB x AD cos α )

    Appliquons maintenant la formule consacrée pour le calcul de l’aire S2 du triangle BCD en fonction de la longueur des 3 côtés

    S2 = 1/4 x (Racine( (BC+CD+DB) x (-BC+CD+DB) x (BC-CD+DB) x (BC+CD-DB) )

    En reportant la valeur de DB calculée plus haut:

    S2 = 1/4 x (Racine( (BC+CD+ Racine (AB2 + AD2 -2AB x AD cos α )) x (-BC+CD+ Racine (AB2 + AD2 -2AB x AD cos α )) x (BC-CD+ Racine (AB2 + AD2 -2AB x AD cos α )) x (BC-CD+ Racine (AB2 + AD2 -2AB x AD cos α )) )

    L’aire du quadrilatère ABCD d’angle α en A est S = S1 + S2
    S = S1 = 1/2 AB x AD sin α + 1/4 x (Racine( (BC+CD+ Racine (AB2 + AD2 - 2AB x AD cos α )) x (-BC+CD+ Racine (AB2 + AD2 - 2AB x AD cos α )) x (BC-CD+ Racine (AB2 + AD2 - 2AB x AD cos α )) x (BC-CD+ Racine (AB2 + AD2 - 2AB x AD cos α )) )

    Nota: AB2 signifie AB au carré

    Salutations
    Gougougou

  24. #23
    dceuppens1958

    Re : Aire d'un quadrilatère quelconque

    Bonjour,

    Il faut connaître au moins un des 4 angles du quadrilatère pour calculer la mesure de son aire.

    La formule de Brahmagupta permet de calculer son aire maximale sur base de son périmètre.

    l'aire A d'un quadrilatère de côtés a; b, c et d est donnée pa la formule suivante

    A=racine carrée de ((s−a)(s−b)(s−c)(s−d))

    avec "s" étant le demi périmètre du quadrilatère a, b, c, d
    s = (a+b+c+d)/2

  25. #24
    jacknicklaus

    Re : Aire d'un quadrilatère quelconque

    Bonjour,

    pourquoi répéter, 9 ans après, le message #15 qui dit la même chose ??
    There are more things in heaven and earth, Horatio, Than are dreamt of in your philosophy.

  26. #25
    dceuppens1958

    Re : Aire d'un quadrilatère quelconque

    Bonjour,

    Ma réponse certes tardive est motivée par deux éléments dont vous semblez ne pas disposer.

    1. je viens de m'inscrire sur ce forum que je quitterai sans doute rapidement vu l'accueil réservé

    2. ma réponse diffère de la #15 car nonobstant le fait que j'y répète la formule donnée de façon "singulière" je précise qui en est l'auteur (Brahmagupta) et je précise également (car je ne pense pas l'avoir vu dans la réponse #15) qu'il s'agit d'une formule permettant de calculer l'aire maximale d'un quadrilatère quelconque en se basant sur son demi périmètre ainsi que le longueur de ses côtés.

    Bien à vous

Discussions similaires

  1. Aire d'un quadrilatère quelconque
    Par invitee7d29a68 dans le forum Mathématiques du collège et du lycée
    Réponses: 3
    Dernier message: 28/04/2013, 15h27
  2. Un peu de géométrie (dans un quadrilatère quelconque)
    Par invite31607802 dans le forum Mathématiques du supérieur
    Réponses: 0
    Dernier message: 06/05/2011, 20h01
  3. Aire d'un quadrilatère
    Par invite295efcb9 dans le forum Mathématiques du collège et du lycée
    Réponses: 1
    Dernier message: 08/02/2009, 10h39
  4. Aire d'un quadrilatère
    Par invite28a6d911 dans le forum Mathématiques du collège et du lycée
    Réponses: 7
    Dernier message: 07/01/2007, 16h37
  5. - Partages d'un quadrilatère quelconque -
    Par invitec526837a dans le forum Mathématiques du supérieur
    Réponses: 17
    Dernier message: 11/12/2005, 13h15