Répondre à la discussion
Affichage des résultats 1 à 20 sur 20

DM Term STL



  1. #1
    Stat83

    DM Term STL

    Voilà j'ai un long DM dont certaines questions me bloquent.

    "Soit la fonction f définie sur l'intervalle ]-4;+inf[ par f(x)=(x²+8x+7)/(x+4)² et C sa courbe représentative dans un repère orthonormé (O,I,J) d'unité graphique 1cm."

    1), 4) et 2) Je pense avoir réussi.

    3) Calculer les coordonnées des points d'intersection de la courbe C avec les axes du repère.
    -> Je vois pas comment faire. Faut-il remplacer y par f(x) ?

    5) a) Montrer que, pour tout x de ]-4;+inf[, on a: f(x)= 1-(9/(x+4)²).
    -> C'est bête mais je n'y arrive pas.

    b) En déduire la primitive F de f sur ]-4;+inf[ dont la courbe représentative passe par le point de coordonnées (-1;0)
    -> Il faut surement utiliser u/v avec v=(x+4) et v'=1, non?

    Voilà merci de vos réponses

    -----


  2. Publicité
  3. #2
    jamo

    Re : DM Term STL

    Bonjour
    pour le 5 tu pars de 1-(9/(x+4)²) , tu développes et tu devrais retomber sur f(x).
    pour le 6 puisque f(x)= 1-(9/(x+4)²). une primitive de f est la même que 1-(9/(x+4)²) à une constante prés.

  4. #3
    Stat83

    Re : DM Term STL

    Oui, pour la 5)a) j'ai réussi c'était tout bête finalement.
    Pour la 5)b) je suis d'accord mais il faut que je fasse la primitive de f(x)= (x²+8x+7)/(x+4)² ?

  5. #4
    Samuel9-14

    Re : DM Term STL

    Et pour la 3
    Les axes du répère sont x et y.

    La courbe coupe l'axe des y pour x=...
    La courbe coupe l'axe des abscisses pour y=...
    (j'ai remplacé f(x) par y pour se placer un peu plus dans l'optique d'un repère...)

    EDIT : message croisé avec Stat83

  6. #5
    jamo

    Re : DM Term STL

    de la question 5 , tu sais que f(x)=1-(9/(x+4)²).
    donc calculer une primitive de f(x)= (x²+8x+7)/(x+4)² revient à calculer une primitive de f(x)=1-(9/(x+4)²)

  7. A voir en vidéo sur Futura
  8. #6
    Stat83

    Re : DM Term STL

    Pour la 3) aucun graphique nous est donné, on devait le dessiner donc je pense pas qu'on puisse lire graphiquement les coordonnées ..

  9. Publicité
  10. #7
    Stat83

    Re : DM Term STL

    Pour la 5) je suis entrain d'essayer de trouver la primitive et c'est la constante qui permettra de choisir qu'elle primitive a une représentation avec les coordonnées (-1;0)?

  11. #8
    jamo

    Re : DM Term STL

    oui, c'est cela

  12. #9
    Stat83

    Re : DM Term STL

    Pour la primitive, j'ai v et v' mais u et u' comment les trouver?!

  13. #10
    jamo

    Re : DM Term STL

    tu as f(x)=1-(9/(x+4)²)
    une primitive de f se calcule avec la primitive de 1-(9/(x+4)²) cad la primitive de 1 et la primitive de -9/(x+4)² + constante . il est plus facile d'utiliser f sous cette forme car c'est plus facile d'intégrer .

  14. #11
    Stat83

    Re : DM Term STL

    Oui c'est tout de suite plus facile!
    Donc la primitive de 1 est x et la primitive de -9/(x+4)² est 9/(x+4)!
    -> F(x)= x+(9/(x+4))+c. A moi de trouver c grâce a la calculatrice, merci.

  15. #12
    jamo

    Re : DM Term STL

    oui c'est bon , n'oublie pas la question 3 .

  16. Publicité
  17. #13
    Samuel9-14

    Re : DM Term STL

    Citation Envoyé par Stat83 Voir le message
    Pour la 3) aucun graphique nous est donné, on devait le dessiner donc je pense pas qu'on puisse lire graphiquement les coordonnées ..
    Tu dis ça parce que tu ne sais pas compléter mes phrases ? :
    La courbe coupe l'axe des y quand x=...
    La courbe coupe l'axe des abscisses si y=...

    C'est pourtant du cours ou sinon de la logique

  18. #14
    Stat83

    Re : DM Term STL

    x= un réel qu'on choisit et y=f(x) ? Ou faut-il que je regarde sur le graphique que j'ai dessiner?
    Dernière modification par Stat83 ; 09/12/2012 à 18h39. Motif: Message croisé avec Samuel9-14

  19. #15
    Stat83

    Re : DM Term STL

    Euh.. c'est pas La courbe coupe l'axe des y quand x=0 et La courbe coupe l'axe des abscisses si y=0 ?!

  20. #16
    Samuel9-14

    Re : DM Term STL

    C''est ça

    Alors comment vas-tu chercher les coordonnées ?

  21. #17
    Stat83

    Re : DM Term STL

    Avec ma calculette? La j'ai trouver (-1;0) et (0;0,4375) ou il y a une formule à appliqué?!

  22. #18
    Samuel9-14

    Re : DM Term STL

    Pas de formule mais une méthode, une règle

    Enfin... plutôt un raisonnement en fait.
    Tu as marqué :
    "La courbe coupe l'axe des abscisses si y=0"
    Ce que l'on pourrait "traduire" par :
    "pour quelle valeur de x a-t-on f(x)=0 ?" Pour les coordonnées c'est facile, tu trouves l'abcisse et l'ordonnée est déjà connu.

    Pour :
    "La courbe coupe l'axe des y quand x=0"

    On te demande en fait, "pour x=0, quelle est la valeur de f(x) ?"
    Là encore, tu trouves l'ordonnée et l'abscisse tu la connais déjà

  23. Publicité
  24. #19
    Stat83

    Re : DM Term STL

    J'ai reussi! J'ai utiliser, pour le premier point, un tableau de signe et, pour le deuxième j'ai remplacer x par 0 et ca me donne les bonnes coordonnées

  25. #20
    Samuel9-14

    Re : DM Term STL

    Un tableau de signe ?
    j'imagine que tu as trouvé les bons résultats mais c'était pas la peine d'utiliser un tableau de signe

Sur le même thème :

Discussions similaires

  1. Etude d'une fonction ( Maths Term STL )
    Par fanfan100000 dans le forum Mathématiques du collège et du lycée
    Réponses: 1
    Dernier message: 29/12/2009, 15h32
  2. [PHYSIQUE][term stl] (formule d'électricité)
    Par Kalys dans le forum Physique
    Réponses: 13
    Dernier message: 11/02/2008, 18h11
  3. help pour une term STL BGB
    Par elodie 86 dans le forum Orientation avant le BAC
    Réponses: 3
    Dernier message: 20/09/2007, 20h42
  4. pile/Term STL
    Par justme9201 dans le forum Chimie
    Réponses: 2
    Dernier message: 03/01/2007, 18h12
  5. oxydoréduction/pile/pH (term STL)
    Par justme9201 dans le forum Chimie
    Réponses: 1
    Dernier message: 27/12/2006, 19h21