Problème de spé maths ( arithmétiques )
Répondre à la discussion
Affichage des résultats 1 à 2 sur 2

Problème de spé maths ( arithmétiques )



  1. #1
    invitec2f59752

    Problème de spé maths ( arithmétiques )


    ------

    Bonjours,

    J'ai un petit problème avec un exercice que ma prof de spé maths m'a donnée a faire en devoir maison :

    On suppose qu'on ne dispose pour payer un achat que de deux sortes de billets, d'un montant respectif de a et b euros, avec a et b entier naturels non nuls.

    Partie A ( on suppose ici qu'on rend la monnaie)
    1) Dans le cas ou a et b sont premier entre eux, justifier qu'on peut payer n'importe quelle somme.
    2) SI a et b ne sont pas premier entre eux, quelles sont les sommes qu'il est possible de payer.

    Partie B ( On suppose ici qu'on ne rend plus la monnaie )
    On prend désormais a et b premier entre eux.

    1) Justifier qu'on peut payer une somme S si et seulement si il existe deux entier naturels m et n tels que : am + bn = S

    2) ( on prend ici a = 3)
    a/ On suppose que b=8. Vérifier qu'on peut payer les sommes 14€,15€,16€. en déduire que toutes sommes supérieures peuvent, elle aussi, être payées. Quelle est la plus grande somme M ne pouvant pas être payée avec des billets de 3€ et 8€.

    b/ Déterminer la plus grand somme ne pouvant pas être payée quand b=11 et puis quand b=13

    c/ dans un repère, représenter graphiquement M en fonction de b. que remarque t-on ? Quelle serait la valeurs de M quand b=14? vérifier



    Bon voila je vous est mis ici une bonne partis de mon DM. Je vous explique mon problème :

    - Dans la partis A : je ne voit pas très bien comment justifier qu'il est possible de payer toute les sommes quand a et b sont premier entre eux et donc encore moins expliquer qu'elle sont les sommes qu'on peut payer si a et b ne sont pas premier entre eux .

    - Dans la Partis B : pour la question 1) j'ai justifier avec Bézout et le théorème de Gauss, ça, pas de problèmes. Après pour la question 2) j'ai bien vu qu'on peut payer les sommes 14,15,16€ mais en déduire que toute les sommes supérieur peuvent être payer je vois pas très bien ... et après je suis complètement paumé !

    Donc voila, au final je pense que je ne comprend pas l'énoncé c'est poiur ça que je n'arrive pas ... si quelqu'un peut me donner un coup de pouce je lui en serait très reconnaissant.

    Merci d'avance !

    -----

  2. #2
    invite1e1a1a86

    Re : Problème de spé maths ( arithmétiques )

    Tu n'étais pas loin pourtant.

    C'est dans la partie A (cf. Bézout/Gauss justement), tu autorises de rendre la monnaie, la question est donc de savoir si tout entier n peut s'écrire
    avec p et q entier relatif (les négatifs correspondant à rendre la monnaie). Cela ne te rappelle rien?

    si a et b ne sont pas premier entre eux, que se passe t-il?

    Pour la partie B, la 1 est une réécriture de l'énoncé sous forme mathématiques. dans ce cas, les entiers doivent être positifs.

    Si je sais faire k €, je sais faire k+3 € assez facilement. ainsi si je sais faire 14, 15 et 16€, il est facile de tout faire. il reste a voir si je peux faire 13, 12, 11 pour répondre.

    pour b et c, le raisonnement est similaire, a toi de voir.

Discussions similaires

  1. maths St2s Suites arithmétiques
    Par invite13c0f997 dans le forum Mathématiques du collège et du lycée
    Réponses: 6
    Dernier message: 03/11/2013, 01h22
  2. dm maths sur suites arithmetiques
    Par invite353e2fa6 dans le forum Mathématiques du collège et du lycée
    Réponses: 33
    Dernier message: 09/10/2012, 16h34
  3. Problème De suite arithmétiques.
    Par invite0e2b0428 dans le forum Mathématiques du collège et du lycée
    Réponses: 1
    Dernier message: 15/04/2012, 14h32
  4. Spe Maths TES : suites arithmétiques
    Par invite3b551471 dans le forum Mathématiques du collège et du lycée
    Réponses: 2
    Dernier message: 31/10/2008, 17h46
  5. Spé maths TS arithmétiques BAC 2005
    Par invitef0f948db dans le forum Mathématiques du collège et du lycée
    Réponses: 6
    Dernier message: 18/10/2007, 21h20