Répondre à la discussion
Affichage des résultats 1 à 19 sur 19

Factorisation d'un polynome du 3ème degré



  1. #1
    Coucouyou13

    Factorisation d'un polynome du 3ème degré

    Bonjour. J'ai L'équation suivante:

    -(x^3)+6x²-12x+8.

    Et je suis censé arriver à (2-x)(x²-4x+4)

    Comment arriver à ce résultat? Merci

    -----

    Dernière modification par Coucouyou13 ; 16/05/2006 à 15h09. Motif: Enoncé

  2. Publicité
  3. #2
    Odie

    Re : Factorisation d'un polynome du 3ème degré

    Bonjour,

    Remarque que 2 est une racine "évidente" de ton polynôme, donc il est factorisable en (2-x)(ax²+bx+c).
    Développe cette expression et identifie les coefficients : trois petites équations pour trois inconnues... tu obtiens le terme de degré 2.

  4. #3
    rvz

    Re : Factorisation d'un polynome du 3ème degré

    Salut,

    Sinon tu peux partir du résultat, développer, et retomber sur la forme initiale.

    __
    rvz

  5. #4
    matthias

    Re : Factorisation d'un polynome du 3ème degré

    Et tu peux aussi continuer à factoriser (et pas besoin de discriminant).

    PS : et aussi faire attention à la rubrique dans laquelle tu poste, mathématiques du collège et du lycée aurait été plus approprié.

  6. #5
    fderwelt

    Re : Factorisation d'un polynome du 3ème degré

    Citation Envoyé par Coucouyou13
    Bonjour. J'ai L'équation suivante:

    -(x^3)+6x²-12x+8.

    Et je suis censé arriver à (2-x)(x²-4x+4)

    Comment arriver à ce résultat? Merci
    Bonjour,

    Facile: on te donne la soluce, donc tu as le droit de tricher. Tu "sais" (parce que c'est dans la soluce) que x=2 est une racine. Donc tu divises ton polynôme par (x-2), et hop, c'est torché. Pour la rédaction, tu peux dire (comme les posts précédents) que "x=2 est une solution évidente" comme si on ne t'avait pas donné cette indication. Ça passe.
    De manière générale, quand tu as un polynôme de degré 3 ou 4, essaye de faire x=0 (en général inutile), x=±1 (qui marche très souvent) ou x=±2 (plus vicieux mais courant).

    -- françois
    Les optimistes croient que ce monde est le meilleur possible. Les pessimistes savent que c'est vrai.

  7. A voir en vidéo sur Futura
  8. #6
    mathprob

    Smile Re : Factorisation d'un polynome du 3ème degré

    bonjour jé trouvé ce forum par hazar , j pensai k vs pourai m aider
    j aimera factoriser cette équation f(x)=(1/2)*(x^3) + (x^2) - x - (3/2)

  9. Publicité
  10. #7
    xixis92

    Re : Factorisation d'un polynome du 3ème degré

    Citation Envoyé par mathprob Voir le message
    bonjour jé trouvé ce forum par hazar , j pensai k vs pourai m aider
    j aimera factoriser cette équation f(x)=(1/2)*(x^3) + (x^2) - x - (3/2)
    Tu as deja poste pour la meme chose.

  11. #8
    mathprob

    Re : Factorisation d'un polynome du 3ème degré

    Je m'en éxcuse , je suis nouveau sur le forum

  12. #9
    pallas

    Re : Factorisation d'un polynome du 3ème degré

    ici si tu connnais (a-b)^3=a^3-3a²b+3ab²-b^3 cela va vite
    -x^3+6x²-12x+8=-(x^3-6x²+12x-8)=-(x-2)^3

  13. #10
    Alex0088

    Re : Factorisation d'un polynome du 3ème degré

    Bonjour, j'ai un problème du même genre à résoudre je dois factoriser x^3+x²-2.
    Je factorise donc par (x-1) ce qui me donne:
    (x-1)(ax²+bx+c)= ax^3+bx²+cx-ax²-bx-c
    a=1 b=1 c=-2 donc,
    (x-1)(x^3+x²-2x-x²-x+2)=(x-1)(x^3-3x+2)
    Or j'ai une correction dans laquelle il est écrit sans explications que la factorisation donne:
    (x-1)(x^2-2x+2)
    Je ne vois pas où est mon erreur, je suppose que mon raisonnement est faux mais ou ?

  14. #11
    boisdevincennes

    Re : Factorisation d'un polynome du 3ème degré

    b=1 et a=1?
    ça nous donne 0x²?
    c'est po ça

  15. #12
    boisdevincennes

    Re : Factorisation d'un polynome du 3ème degré

    a=1
    b-a=1
    donc b=1+a=2

  16. Publicité
  17. #13
    boisdevincennes

    Re : Factorisation d'un polynome du 3ème degré

    x^3+x²-2.
    (x-1)(ax²+bx+c)= ax^3+bx²+cx-ax²-bx-c
    a=1
    b-a=1
    c-b=0 b=2
    -c=-2 c=2
    ça fait (x-1)(x^2+2x+2)=x^3+2X²+2X-X²-2X-2=X^3+X²-2
    (x-1)(x^2-2x+2)=x3-2x²+2x-x²+2X-2=x3-3x²+4x-2 LA CORRECTION EST FAISANDé

  18. #14
    gg0

    Re : Factorisation d'un polynome du 3ème degré

    Bonjour Alex008.

    le défaut de ce que tu écris est après ça :
    (x-1)(ax²+bx+c)= ax^3+bx²+cx-ax²-bx-c =x^3+x²-2.
    Ensuite tu identifie sans avoir réduit ton polynôme ax^3+bx²+cx-ax²-bx-c Or, avec a=1 b=1 c=-2 , ax^3+bx²+cx-ax²-bx-c = x^3+x²-2x-x²-x+2=x3 -3x+2 pas x3+x²-2.

    Sinon, ce qui est dans ton corrigé est faux, à moins que tu aies écrit -2x à la place de +2x.

    Cordialement.

  19. #15
    boisdevincennes

    Re : Factorisation d'un polynome du 3ème degré

    c'est ce que j'ai dis quand j'ai mis que le corrigé est faisandé et j'ai trouvé a b et c moi monsieur gg0.

  20. #16
    gg0

    Re : Factorisation d'un polynome du 3ème degré

    Boisdevincenne,

    tu serais moins ... on pourrait discuter.
    J'avais parlé de ne pas continuer les attaques, mais comme tu recommences, je te rappelle que tu écris un message faux sur 2. Et qu'ici, tu n'as pas répondu à la question de Alex008, car la seule chose qui t'intéresse est de faire l'intéressant : "moi, je sais faire !". A ton âge, c'est malsain (tu aurais 12 ans, on pourrait admettre).

  21. #17
    boisdevincennes

    Re : Factorisation d'un polynome du 3ème degré

    VOICI MA REPONSE:
    x^3+x²-2.
    (x-1)(ax²+bx+c)= ax^3+bx²+cx-ax²-bx-c
    a=1
    b-a=1
    c-b=0 b=2
    -c=-2 c=2
    ça fait (x-1)(x^2+2x+2)=x^3+2X²+2X-X²-2X-2=X^3+X²-2 CA C'est JUSTE

    (x-1)(x^2-2x+2)=x3-2x²+2x-x²+2X-2=x3-3x²+4x-2 LA CORRECTION EST FAISANDé

  22. #18
    Alex0088

    Re : Factorisation d'un polynome du 3ème degré

    Ah d'accord, j'ai compris mon erreur, je te remercie gg0.
    Je me suis effectivement trompée en recopiant ma correction, je m'en excuse.
    Cordialement,
    Alex008.

  23. Publicité
  24. #19
    joel_5632

    Re : Factorisation d'un polynome du 3ème degré

    bonjour

    Pour trouver les racines entières "évidentes" d'un polynome à coefficients entiers, il y a une méthode générale qu'il faut connaître

    -(x^3)+6x²-12x+8 = 0

    Soit n un entier solution de l'équation précédente

    n3-6n²+12n = 8

    n(n²-6n+12) = 8

    donc N | 8 (attention, c'est nécessaire, évidemment pas suffisant)

    donc n {-8, -4, -2, -1, 1, 2, 4, 8}

    Puis on essaye ces 8 racines potentielles.

    On peut aussi par une méthode analogue touver les racines rationnelles "évidentes" d'un polynome à coefficients rationnels
    Dernière modification par joel_5632 ; 03/12/2012 à 10h35.

Discussions similaires

  1. [TS]factorisation d'un polynome de degré 4
    Par wolfЭn dans le forum Mathématiques du collège et du lycée
    Réponses: 3
    Dernier message: 06/03/2007, 21h30
  2. factorisation d'un polynôme de degré 3
    Par laluciferdu77 dans le forum Mathématiques du collège et du lycée
    Réponses: 6
    Dernier message: 05/02/2007, 22h06
  3. Factorisation d'un polynome degré 4
    Par Helps dans le forum Mathématiques du collège et du lycée
    Réponses: 1
    Dernier message: 06/11/2006, 17h27
  4. Formule de de factorisation d'un polynome de degré n
    Par Iangagn dans le forum Mathématiques du collège et du lycée
    Réponses: 1
    Dernier message: 10/10/2006, 13h10
  5. signe d'un polynome du 3ème degré
    Par aureliegrollier dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 07/09/2004, 20h35