Rang d'une matrice
Répondre à la discussion
Affichage des résultats 1 à 5 sur 5

Rang d'une matrice



  1. #1
    Bleyblue

    Rang d'une matrice


    ------

    Bonjour,

    Je cherche des réels et tels que




    soit de rang 2

    En tâtonnant ce n'est pas dur de trouver lambda = mu = 0 (je me demande que doit valoir lambda pour que les trois premiers vecteurs colonnes soient linéairement dépendants et puis je me demande que doit valoir mu pour que le dernier vecteur colonne soit combili des trois premiers)

    Le problème c'est que ce n'est que du tâtonement

    Savez-vous s'il existe une astuce conduisant à une méthode plus systématique ?

    merci

    -----

  2. #2
    invite4793db90

    Re : Rang d'une matrice

    Salut,

    tu peux regarder les déterminants des sous-matrices d'ordre 3 (il y en a 2) et faire en sorte qu'ils soient tous nuls (le rang est la dimension de la plus grande sous-matrice inversible).

    Cordialement.

  3. #3
    invite6b1e2c2e

    Re : Rang d'une matrice

    Citation Envoyé par martini_bird Voir le message
    Salut,

    tu peux regarder les déterminants des sous-matrices d'ordre 3 (il y en a 2) et faire en sorte qu'ils soient tous nuls (le rang est la dimension de la plus grande sous-matrice inversible).

    Cordialement.
    Salut,

    Pour compléter, cela suffit s'il y a une sous matrice 2*2 inversible. Ici, par chance, il y en a une, donc ça devrait être faisable.

    Cordialement,
    __
    rvz

  4. #4
    invitedf667161

    Re : Rang d'une matrice

    Encore pour compléter, ici il y a des sous-matrices de dimension 2 inversibles. Donc le rang est au moins 2.

    Pour qu'il ne soit pas égal à 3, il faut donc choisir lambda et mu de manière à ce qu'aucune sous matrice de dimension 3 ne soit inversible.

    EDIT : bon d'accord, je ne fais que répéter ce que mes collègues on dit plus haut ...

  5. A voir en vidéo sur Futura
  6. #5
    Bleyblue

    Re : Rang d'une matrice

    Ah juste je n'avais pas pensé à cette définition la du rang

    Eh bien cher collègues matheux je vous remercie une fois de plus pour votre aide

Discussions similaires

  1. Rang d'une matrice !!
    Par invitecbade190 dans le forum Mathématiques du supérieur
    Réponses: 9
    Dernier message: 11/09/2007, 23h24
  2. calcul de rang d'une matrice
    Par rajamia dans le forum Mathématiques du supérieur
    Réponses: 14
    Dernier message: 12/08/2007, 18h58
  3. Le rang d'une matrice
    Par invite1469b964 dans le forum Mathématiques du supérieur
    Réponses: 15
    Dernier message: 20/03/2007, 10h20
  4. Définir le rang d'une matrice
    Par invited00ee48c dans le forum Mathématiques du supérieur
    Réponses: 0
    Dernier message: 03/12/2006, 14h27
  5. Rang d'une matrice.
    Par invite2ece6a9a dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 17/09/2006, 12h20