Répondre à la discussion
Affichage des résultats 1 à 7 sur 7

Résolution algébrique d'un système d'équations sous Matlab



  1. #1
    jbollagnier

    Résolution algébrique d'un système d'équations sous Matlab


    ------

    Bonjour à tous!

    Voila j'ai les deux éqautions suivantes:

    A=f+d
    B=f-3d


    avec 2 inconnues f et d.

    Je voudrais que Matlab puisse trouver les inconnues en fonction de A et B de telle sorte que j'obtienne la solution suivante:

    d=(A-B)/4
    f=A-(A-B)/4


    Dois-je passer par le calcul matriciel?
    J'avais pour idée d'utiliser la fonction "evala" mais je n'ai pas trouver les arguments pour obtenir la solution!

    Merci de votre aide!!!!

    JB

    -----

  2. Publicité
  3. #2
    cyberantoine

    Re : Résolution algébrique d'un système d'équations sous Matlab

    Effectivement passer par les matrices est une facon trés simple de résoudre le système. Le code de Matlab est trés efficace pour le calcul matriciel.
    Ici au lieu de rentrer tes équations tu rentres la matrice et si elle est inversible tu as facilement ton unique solution.
    si tu as un problème pour la programmation proprement dite. Je dois pouvoir t'aider.

  4. #3
    jbollagnier

    Re : Résolution algébrique d'un système d'équations sous Matlab

    J'ai regarder le site suivant:
    http://www.mathworks.com/access/help...420224#f1-7493
    Cela marche pour l'exemple que j'avais donner précedement. Mais pas pour celui que je veux résoudre:

    K = solve('m=g/v-h*x/v-y*i/w','n=-x*g/v+h/v-y*i/w','0=-z*g/v-z*h/v+i/w','r=(1+x)*l/v','0=y-z*w/v');
    K.v
    K.w
    K.x
    K.y
    K.z

    j'obtiens l'erreur suivante:

    Warning: Explicit solution could not be found.
    > In solve at 140
    In Stiff at 11
    ??? Access to an object's fields is only permitted within its methods.

    Error in ==> Stiff at 12
    K.v

    Pourtant j'ai 5 équations:

    m=g/v-h*x/v-y*i/w
    n=-x*g/v+h/v-y*i/w
    0=-z*g/v-z*h/v+i/w
    r=(1+x)*l/v
    0=y-z*w/v')


    et je veux connaitre les 5 inconnues v, w, x, y, z en fonction de m, n, r, g, h, i, et l.
    (calcul matriciel possible??? - Comment ???)

    Est-il possoble de le résoudre ce problème,
    Merci d'avance!

    JB

  5. #4
    erff

    Re : Résolution algébrique d'un système d'équations sous Matlab

    Bonjour,
    au niveau de la syntaxe, il suffit de mettre
    x=M\[A;B] où M est la matrice du systeme...x contient les solutions...enfin si mes souvenirs sont bons

  6. #5
    erff

    Re : Résolution algébrique d'un système d'équations sous Matlab

    Je viens de voir que tu souhaitais une résolution formelle...je sais que cette syntaxe marche pour une résolution numérique...par contre si c'est du calcul formel, je ne sais pas. Je n'ai pas matlab chez moi.

  7. A voir en vidéo sur Futura
  8. #6
    jbollagnier

    Re : Résolution algébrique d'un système d'équations sous Matlab

    Le probleme est que je ne peux pas mettre les solutions en forme vectorielle étant donnée la matrice que j'ai:



    Je dois aussi rester en calcul formel car j'aurais ensuite à utiliser ces formules beaucoup de fois!
    Savez-vous si il y une solution au problème?

    Merci d'avance!


    JB

  9. Publicité
  10. #7
    jbollagnier

    Re : Résolution algébrique d'un système d'équations sous Matlab

    J'ai découvert que je ne peut pas résoudre ce systeme analytiquement (http://www.developpez.net/forums/sho...d.php?t=428918)

    Par contre maintenant j'aimerais bien pouvoir le résoudre numériquement!

    Quelqu'un aurait-il des pistes?

    Merci d'avance!

    JB

Sur le même thème :

Discussions similaires

  1. résolution d'équations différentielles sous matlab
    Par Med dans le forum Logiciel - Software - Open Source
    Réponses: 12
    Dernier message: 06/05/2009, 21h22
  2. Résolution numérique d'un système d'équations différentielles d'ordre 2 non linéaire
    Par mariejuana dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 02/07/2008, 17h55
  3. resolution d'un system sous MATLAB
    Par ABN84 dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 16/12/2007, 19h15
  4. la résolution d'un systéme d'équations différentielles
    Par H.Dalila dans le forum Mathématiques du supérieur
    Réponses: 0
    Dernier message: 26/04/2007, 15h07
  5. Résolution d'un système d'équations différentielles d'ordre 1
    Par layougue dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 23/11/2006, 14h56