Répondre à la discussion
Page 1 sur 2 1 DernièreDernière
Affichage des résultats 1 à 30 sur 33

Intégrales peu sympathiques



  1. #1
    MiMoiMolette

    Intégrales peu sympathiques



    Plop,

    Alors, je ne sais pas si certaines ont des solutions, je sais que d'autres en ont.

    Amusez-vous bien :P













    Trouver :

    , avec


    Bonne chance !

    P.S. : pas de devoir maison à la clé ~> de la simple curiosité

    -----

    - Je peux pas, j'ai cours
    - Vous n'êtes pas un peu vieux ?
    - Je suis le prof

  2. Publicité
  3. #2
    rajamia

    Re : Intégrales peu sympathiques

    tout ça!!!!!!!!!!!

  4. #3
    Bleyblue

    Re : Intégrales peu sympathiques

    C'est trop fun !
    Le genre de choses avec lesquelles je m'amusais il y a deux ou trois ans.

    J'en vois une qui ne me semble pas avoir de solution.

  5. #4
    homotopie

    Re : Intégrales peu sympathiques

    Citation Envoyé par MiMoiMolette Voir le message
    , avec
    Pour lxl<1,
    en regroupant les coefficients facteurs de (x/2)p pour p fixé, on obtient .
    La famille des est donc sommable et de somme .
    Pour x entre -2 et -1 on a au mieux une semi-convergence donc il faudrait préciser l'ordre de la sommation.

    Les autres je les laisse (je soupçonne les 1ère, 3ème et 4ème d'être sans solution dans les fonctions usuelles, la 2ème ?. Maintenant on arrive peut-être à calculer la 2ème et la 4ème sans primitive explicite).

    EDIT : les mathématiques restent ludiques malgré tout.
    Dernière modification par homotopie ; 01/04/2008 à 23h03.

  6. #5
    Bleyblue

    Re : Intégrales peu sympathiques

    Citation Envoyé par homotopie
    les mathématiques restent ludiques malgré tout.
    A mon avis elles devraient rester ludiques avant tout, sous peine de voir de moins en moins de jeunes s'y intéresser (peu de gens sont du même avis que moi, je suis persuadé que c'est vrai pourtant )

  7. A voir en vidéo sur Futura
  8. #6
    God's Breath

    Re : Intégrales peu sympathiques

    Citation Envoyé par MiMoiMolette Voir le message
    Je ne pense pas que ce soit calculable à l'aide des fonctions usuelles.

    Citation Envoyé par MiMoiMolette Voir le message
    Se calcule en développant en série entière.

    Citation Envoyé par MiMoiMolette Voir le message
    Par changement de variable, se ramène à la fonction d'erreur de Gauss.

    Citation Envoyé par MiMoiMolette Voir le message
    Par changement de variable, se ramène à la fonction .

    Citation Envoyé par MiMoiMolette Voir le message
    Trouver :
    , avec
    C'est un bête développement en série double de

  9. Publicité
  10. #7
    homotopie

    Re : Intégrales peu sympathiques

    Citation Envoyé par Bleyblue Voir le message
    A mon avis elles devraient rester ludiques avant tout, sous peine de voir de moins en moins de jeunes s'y intéresser (peu de gens sont du même avis que moi, je suis persuadé que c'est vrai pourtant )
    Pour ma part je suis d'accord.
    Mais je faisais référence à une demande d'aide pour le calcul d'une intégrale postée par erreur dans "sciences ludiques" sur lequel Mimoilette et moi sommes intervenus.

  11. #8
    MiMoiMolette

    Re : Intégrales peu sympathiques

    homotopie : en effet, mais c'est bien plus ludique de les poser ici que là-bas

    God's breath :

    Par changement de variable, se ramène à la fonction d'erreur de Gauss.
    Pourrais-tu m'en dire plus, please ? :P

    C'est un bête développement
    Je dois être bête, je ne vois pas
    - Je peux pas, j'ai cours
    - Vous n'êtes pas un peu vieux ?
    - Je suis le prof

  12. #9
    invite43219988

    Re : Intégrales peu sympathiques

    En gros tu développes les deux produits de God's Breath en série entière, puis tu calcules le produit des deux sommes (si j'ai bien compris)

  13. #10
    invite43219988

    Re : Intégrales peu sympathiques

    Enfin ça doit pas être ça parce que j'ai beau essayer je n'y arrive pas...

  14. #11
    invite43219988

    Re : Intégrales peu sympathiques

    Pour intégrale de 0 à 1 de ln(x)ln(1-x), j'arrive à :
    et je ne vois pas....

  15. #12
    invite43219988

    Re : Intégrales peu sympathiques

    Pour la 4, je trouve racine de Pi par la méthode de God's Breath.
    Sinon on connait des valeurs de la fonction erreur de gauss ?

  16. Publicité
  17. #13
    Bleyblue

    Re : Intégrales peu sympathiques

    Il y a aussi :



    qui peut-être amusante à calculer (je sais que c'est possible).

  18. #14
    God's Breath

    Re : Intégrales peu sympathiques

    Citation Envoyé par MiMoiMolette Voir le message
    God's breath :


    Par changement de variable, se ramène à la fonction d'erreur de Gauss.

    Pourrais-tu m'en dire plus, please ? :P
    Je pose bêtement , donc et , d'où .
    Et je sais que cette intégrale se simplifie en posant : ,
    qui s'exprime à l'aide du prolongement analytique dans le plan complexe de la fontion d'erreur de Gauss.

  19. #15
    God's Breath

    Re : Intégrales peu sympathiques

    Citation Envoyé par MiMoiMolette Voir le message
    Trouver :

    , avec

    God's breath : C'est un bête développement en série double de

    Je dois être bête, je ne vois pas
    Pour , on a , donc .
    De là , et on peut développer en série entière pour ...
    Mais la sommabilité de la famille double n'est assurée que pour ainsi que l'a fait remarquer homotopie/

  20. #16
    ericcc

    Re : Intégrales peu sympathiques

    Citation Envoyé par God's Breath Voir le message
    Je pose bêtement , donc et , d'où .
    Et je sais que cette intégrale se simplifie en posant : ,
    qui s'exprime à l'aide du prolongement analytique dans le plan complexe de la fontion d'erreur de Gauss.
    On pouvait aussi poser directement d'où 2u du= dx/x et le résultat

  21. #17
    homotopie

    Re : Intégrales peu sympathiques

    Citation Envoyé par MiMoiMolette Voir le message
    homotopie : en effet, mais c'est bien plus ludique de les poser ici que là-bas
    En effet.
    Citation Envoyé par Bleyblue Voir le message
    Il y a aussi :



    qui peut-être amusante à calculer (je sais que c'est possible).
    Ça devient trop ludique pour moi.

  22. #18
    God's Breath

    Re : Intégrales peu sympathiques

    Citation Envoyé par Ganash Voir le message
    Pour intégrale de 0 à 1 de ln(x)ln(1-x), j'arrive à :
    et je ne vois pas....
    Une petite dose de décomposition en éléments simples :
    .

  23. Publicité
  24. #19
    God's Breath

    Re : Intégrales peu sympathiques

    Citation Envoyé par Bleyblue Voir le message
    Il y a aussi :



    qui peut-être amusante à calculer (je sais que c'est possible).
    Il faut faire intervenir les intégrales eulériennes :
    Avec donc et :
    .

    Cette relation est symétrique en et , donc :
    , ou encore
    .

    On peut aussi intégrer par parties l'intégrale obtenue en pour en montrer la symétrie en et .

  25. #20
    Bleyblue

    Re : Intégrales peu sympathiques

    Diable, tu es vraiment balaise God's Breath

    bravo

  26. #21
    God's Breath

    Re : Intégrales peu sympathiques

    Citation Envoyé par Bleyblue Voir le message
    Diable, tu es vraiment balaise God's Breath
    C'est simplement des réflexes acquis après des lustres de calcul d'intégrales.

    C'est pourquoi, dans un message précédent, je propose les deux changements de variables successifs , puis . Chacun d'eux me rapproche d'une intégrale connue. Il est bien évident que dans un texte "muri pour publication", je proposerai directement ...

  27. #22
    ericcc

    Re : Intégrales peu sympathiques

    Citation Envoyé par God's Breath Voir le message
    C'est simplement des réflexes acquis après des lustres de calcul d'intégrales.

    C'est pourquoi, dans un message précédent, je propose les deux changements de variables successifs , puis . Chacun d'eux me rapproche d'une intégrale connue. Il est bien évident que dans un texte "muri pour publication", je proposerai directement ...
    Dans ce dernier cas le changement u=sqr(ln(x)) est quand même assez tentant tout de suite, non ?

  28. #23
    MiMoiMolette

    Re : Intégrales peu sympathiques

    Ça m'intéresserait de trouver des méthodes pour approfondir les calculs d'intégrale !

    Juste des mots-clés ou des méthodes ou encore des "réflexes" comme penser aux changements de variables, savoir quand l'intégrale n'est pas exprimable en fonctions usuelles...

    Ou même un rappel sur le changement d'intégrale à somme

    Pour e^(u²) on ne connaît pas de primitive, mais on connaît l'intégrale entre - l'infini et + infini, c'est ça ?

    Mici pour les précisions, vais essayer de démêler tout cela ^^
    - Je peux pas, j'ai cours
    - Vous n'êtes pas un peu vieux ?
    - Je suis le prof

  29. #24
    ericcc

    Re : Intégrales peu sympathiques

    A mon humble avis, l'intégrale entre -inf et +inf de e n'est pas trop définie
    Par contre celle de e-u² est archi-connue

  30. Publicité
  31. #25
    Bleyblue

    Re : Intégrales peu sympathiques

    Pour e^(u²) on ne connaît pas de primitive, mais on connaît l'intégrale entre - l'infini et + infini, c'est ça ?
    Et on calcul ça avec des intégrales doubles et c'est très joli.

    En passant quelqu'un sait s'il y a moyen de calculer cette intégrale en intégrant dans ?
    L'idéal serait d'essayer mais ...

  32. #26
    Bleyblue

    Re : Intégrales peu sympathiques

    savoir quand l'intégrale n'est pas exprimable en fonctions usuelles...
    Ca ca vient tout seul en calculant des tonnes d'intégrales durant des années
    Sinon se souvenir de cas typique tels que :







  33. #27
    MiMoiMolette

    Re : Intégrales peu sympathiques

    Tiens, petit up pour une intégrale !
    Après, faut encore que je relise tous les posts :s sorry pour le manque de réaction



    La solution peut tenir en deux ou trois lignes
    - Je peux pas, j'ai cours
    - Vous n'êtes pas un peu vieux ?
    - Je suis le prof

  34. #28
    God's Breath

    Re : Intégrales peu sympathiques

    Citation Envoyé par MiMoiMolette Voir le message
    Tiens, petit up pour une intégrale !
    Après, faut encore que je relise tous les posts :s sorry pour le manque de réaction



    La solution peut tenir en deux ou trois lignes
    un petit changement de variable en ...

  35. #29
    MiMoiMolette

    Re : Intégrales peu sympathiques

    Roooh il est mignon celui-là !

    Bon, reste à savoir pourquoi je ne trouve pas le même résultat entre les deux méthodes
    Un déjeuner me permettra d'y réfléchir

    Sinon, il y a une méthode sans changement de variable
    - Je peux pas, j'ai cours
    - Vous n'êtes pas un peu vieux ?
    - Je suis le prof

  36. #30
    God's Breath

    Re : Intégrales peu sympathiques

    Citation Envoyé par MiMoiMolette Voir le message
    Tiens, petit up pour une intégrale !
    Après, faut encore que je relise tous les posts :s sorry pour le manque de réaction



    La solution peut tenir en deux ou trois lignes
    Le plus élégant :
    une primitive de est
    une primitive de est
    donc une primitive de est
    et en prime, une primitive de est

    Sinon :
    facile à primitiver...

    Ou encore ma première proposition, moins courante,
    facile à primitiver...

Sur le même thème :

Page 1 sur 2 1 DernièreDernière

Discussions similaires

  1. nerfs sympathiques et parasympathiques
    Par bertrandfs dans le forum Santé et médecine générale
    Réponses: 2
    Dernier message: 06/02/2008, 15h33
  2. Deux sympathiques suites
    Par Ledescat dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 08/07/2007, 23h38
  3. Intégrales-Intégrales généralisée
    Par Nicolas666666 dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 26/03/2007, 10h35
  4. un peu d'aide pour les integrales doubles et tripples
    Par lloicus dans le forum Mathématiques du supérieur
    Réponses: 0
    Dernier message: 10/08/2004, 07h10
  5. petits problèmes sympathiques
    Par Le_Sphinx dans le forum Mathématiques du supérieur
    Réponses: 25
    Dernier message: 27/04/2004, 17h54