Répondre à la discussion
Affichage des résultats 1 à 7 sur 7

Démo sur la décomposition en serie de Fourier.



  1. #1
    Lynyrd81

    Démo sur la décomposition en serie de Fourier.


    ------

    Bonjours tout le monde!
    J'aimerais savoir quelle est la demonstration que tout signal periodique y(t) de periode T peut se décomposer en:


    Avec





    Merci d'avance!

    -----

  2. Publicité
  3. #2
    God's Breath

    Re : Démo sur la décomposition en serie de Fourier.

    Bonjour,
    Citation Envoyé par Lynyrd81 Voir le message
    J'aimerais savoir quelle est la demonstration que tout signal periodique y(t) de periode T peut se décomposer en:
    ...
    Il faut imposer des conditions de régularité au signal pour pouvoir le décomposer en série de Fourier.
    Et Dieu, dans sa colère, pour punir les humains, envoya sur la Terre les mathématiciens.

  4. #3
    Lynyrd81

    Re : Démo sur la décomposition en serie de Fourier.

    Et quelle conditions? La periodicité ne suffit pas?

  5. #4
    God's Breath

    Re : Démo sur la décomposition en serie de Fourier.

    Citation Envoyé par Lynyrd81 Voir le message
    Et quelle conditions? La periodicité ne suffit pas?

    Soit la somme partielle de la série de Fourier de . On a



    On pose , de telle sorte que .
    On peut alors écrire ,
    puis

    Mais on a alors besoin d'hypothèses sur pour pouvoir montrer que cette intégrale tend vers 0 lorsque tend vers l'infini.
    Et Dieu, dans sa colère, pour punir les humains, envoya sur la Terre les mathématiciens.

  6. #5
    Lynyrd81

    Re : Démo sur la décomposition en serie de Fourier.

    Ah ok! mais j'arrive pas trop à analyser quelles doivent être les hypothèses sur y. Il suffira que je suppose au début de la démo que ces hypothèses sont verifiées. Est ce que vous pouvez me les dire SVP?

  7. A voir en vidéo sur Futura
  8. #6
    God's Breath

    Re : Démo sur la décomposition en serie de Fourier.

    Citation Envoyé par Lynyrd81 Voir le message
    Ah ok! mais j'arrive pas trop à analyser quelles doivent être les hypothèses sur y. Il suffira que je suppose au début de la démo que ces hypothèses sont verifiées. Est ce que vous pouvez me les dire SVP?
    Il y a divers types de conditions suffisantes, mais donc aucune n'est nécessaire à la convergence de la série. Les plus courantes sont celles établies par Dini, Jordan et de la Vallée-Poussin.

    La plus simple reste la condition de Dirichlet : est continue et dérivable, sauf en un nombre fini de points en lesquels et sa dérivée ont des limites à droite et à gauche.
    Et Dieu, dans sa colère, pour punir les humains, envoya sur la Terre les mathématiciens.

  9. Publicité
  10. #7
    Lynyrd81

    Re : Démo sur la décomposition en serie de Fourier.

    D'accord. Mais le problème c'est que moi je fait ça sur un signal crénau Donc il n'est pas continue ni dérivable partout. Mais est ce qu'on peut dans ce cas se placer sur [a,a+T] et considerer qu'il est non dérivable est non continu sur un nombre fini de point? Si c'est le cas est ce que je peux avoir la fin de la demo (prouver que Sn-y(t) tend vers 0).

Discussions similaires

  1. Justification d'une décomposition/transformée(de Fourier)
    Par Hash dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 28/05/2008, 07h21
  2. Décomposition en série de Fourier bilatérale
    Par tekken dans le forum Physique
    Réponses: 27
    Dernier message: 19/09/2007, 13h41
  3. Décomposition de Fourier
    Par atmart dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 02/01/2007, 10h41
  4. Décomposition de Fourier
    Par Penangol dans le forum Mathématiques du supérieur
    Réponses: 5
    Dernier message: 25/12/2006, 16h56
  5. décomposition de fourier
    Par sebade dans le forum Électronique
    Réponses: 3
    Dernier message: 14/05/2006, 12h35