Répondre à la discussion
Affichage des résultats 1 à 15 sur 15

differentielle



  1. #1
    someone00

    differentielle


    ------

    salut
    je n'ai pas su calculer la differentielle suivante
    dC = (3x^2+6y)dX -14yzdY + 20xy^2dZ
    je dois calculer C
    merci

    -----

  2. Publicité
  3. 📣 Nouveau projet éditorial de Futura
    🔥🧠 Le Mag Futura est lancé, découvrez notre 1er magazine papier

    Une belle revue de plus de 200 pages et 4 dossiers scientifiques pour tout comprendre à la science qui fera le futur. Nous avons besoin de vous 🙏 pour nous aider à le lancer...

    👉 Je découvre le projet

    Quatre questions à explorer en 2022 :
    → Quels mystères nous cache encore la Lune 🌙 ?
    → Pourra-t-on bientôt tout guérir grâce aux gènes 👩‍⚕️?
    → Comment nourrir le monde sans le détruire 🌍 ?
    → L’intelligence artificielle peut-elle devenir vraiment intelligente 🤖 ?
  4. #2
    God's Breath

    Re : differentielle

    Citation Envoyé par someone00 Voir le message
    je n'ai pas su calculer la differentielle suivante
    dC = (3x^2+6y)dX -14yzdY + 20xy^2dZ
    J'ai comme un problème : de la relation que tu donnes, je déduis que
    Ces dérivées partielles, étant polynomiales, sont de classe , donc elle-même est de classe , et les valeurs viennent contredire le théorème de Schwarz...
    Et Dieu, dans sa colère, pour punir les humains, envoya sur la Terre les mathématiciens.

  5. #3
    someone00

    Re : differentielle

    je ne comprends pas
    est-ce-que ca veut dire qu'on ne peut pas integrer la differentielle?

  6. #4
    Seirios

    Re : differentielle

    Bonjour,

    je ne comprends pas
    est-ce-que ca veut dire qu'on ne peut pas integrer la differentielle?
    Si je ne me trompe pas, cela signifie que ta différentielle n'est pas totale exacte.
    If your method does not solve the problem, change the problem.

  7. A voir en vidéo sur Futura
  8. #5
    God's Breath

    Re : differentielle

    Bonjour,

    Citation Envoyé par Phys2 Voir le message
    Si je ne me trompe pas, cela signifie que ta différentielle n'est pas totale exacte.
    Exact !

    Autrement dit, la forme ne peut être mise sous la forme .

    D'autre part, je ne sais pas ce que signifie "calculer la forme différentielle suivante ..." : comment peut-on "calculer", un objet défini par sa valeur ?
    Et Dieu, dans sa colère, pour punir les humains, envoya sur la Terre les mathématiciens.

  9. #6
    someone00

    Re : differentielle

    en fait ca a un rapport avec la circulation du champs de vecteurs
    A=(3x^2+6y) i -14yz j + 20xy^2 k
    donc ca m'a ramené a l'integrale precedente
    vous voyez?
    merci

  10. Publicité
  11. #7
    God's Breath

    Re : differentielle

    Comme il ne s'agit pas d'un champ de gradients, il faudrait savoir le long de quel chemin on doit en calculer la circulation.
    Et Dieu, dans sa colère, pour punir les humains, envoya sur la Terre les mathématiciens.

  12. #8
    someone00

    Re : differentielle

    dans l'enoncé
    je dois calculer la circulation le long du chemin rectiligne entre les points (0;0;0)
    et (1;1;1)
    et comment ont a su que ce n'est pas un gradient

  13. #9
    God's Breath

    Re : differentielle

    Citation Envoyé par someone00 Voir le message
    je dois calculer la circulation le long du chemin rectiligne entre les points (0;0;0)
    et (1;1;1)
    Le chemin rectiligne est défini x=y=z avec x dans [0,1]. Il suffit donc d'intégrer (3x^2+6x)dx -14x^2dx + 20x^3dx entre 0 et 1...

    Citation Envoyé par someone00 Voir le message
    et comment ont a su que ce n'est pas un gradient
    Le champ n'est pas un gradient parce que son rotationnel est non nul...
    Et Dieu, dans sa colère, pour punir les humains, envoya sur la Terre les mathématiciens.

  14. #10
    someone00

    Re : differentielle

    salut
    est-ce-que tu peux etre un peu plus clair je ne sais comment integer la differentielle

  15. #11
    someone00

    Re : differentielle

    pourquoi x=y=z

  16. #12
    God's Breath

    Re : differentielle

    Parce que le chemin est rectiligne !!!
    Et Dieu, dans sa colère, pour punir les humains, envoya sur la Terre les mathématiciens.

  17. Publicité
  18. #13
    someone00

    Re : differentielle

    desolé mais je ne comprends pas

  19. #14
    God's Breath

    Re : differentielle

    x=y=z est un système d'équation d'une droite, elle passe par les points de coordonnées (0,0,0) et (1,1,1), donc c'est la seule qui passe par ces points.
    Comme le chemin est rectiligne, il suit cette droite... et il n'est alors pas très difficile de remplacer y et z par x dans le calcul de l'intégrale.
    Et Dieu, dans sa colère, pour punir les humains, envoya sur la Terre les mathématiciens.

  20. #15
    someone00

    Re : differentielle

    ah oui je comprends maintenant
    mais dans la deuxieme question ont m'a demandé de cacluler la circulation dans un autre chemin qui passe par (0;0;0) puis (1;1;0) et (1;1;1)

Discussions similaires

  1. différentielle
    Par kpikpo dans le forum Mathématiques du supérieur
    Réponses: 6
    Dernier message: 08/09/2008, 00h09
  2. différentielle
    Par kpikpo dans le forum Mathématiques du supérieur
    Réponses: 1
    Dernier message: 24/08/2008, 15h03
  3. différentielle en 0
    Par C.F dans le forum Mathématiques du supérieur
    Réponses: 0
    Dernier message: 04/05/2008, 12h52
  4. différentielle
    Par isabell dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 10/12/2006, 16h44
  5. différentielle
    Par stilldre dans le forum Physique
    Réponses: 9
    Dernier message: 18/11/2004, 21h25