Répondre à la discussion
Affichage des résultats 1 à 14 sur 14

Simplification arctan en arccos



  1. #1
    -bonbon-

    Simplification arctan en arccos


    ------

    Bonjour à tous, j'ai du mal à simplifier l'expression suivante en fonction de arccos, pouvez-vous m'aider?

    Expression à simplifier : arctan(racine((1-x)/(1+x))) en fonction de arccos.

    2 idées :
    -dériver et essayer de retomber sur une forme connue (par exemple la dérivée de arccos) pour par la suite intégrer et chercher la constante pour un certain x.
    Bon j'arrive à une expression que je n'arrive pas à primitiver!

    -mettre arctan(tan(racine...))=... mais je n'arrive pas à faire grand chose d'autre.

    On me demande aussi de préciser sur quel intervalle je travaille, je crois que ça va dépendre de la méthode utilisée pour les calculs mais on a en tout cas x différent de -1

    Merci d'avance pour votre aide

    -----

  2. Publicité
  3. 📣 Nouveau projet éditorial de Futura
    🔥🧠 Le Mag Futura est lancé, découvrez notre 1er magazine papier

    Une belle revue de plus de 200 pages et 4 dossiers scientifiques pour tout comprendre à la science qui fera le futur. Nous avons besoin de vous 🙏 pour nous aider à le lancer...

    👉 Je découvre le projet

    Quatre questions à explorer en 2022 :
    → Quels mystères nous cache encore la Lune 🌙 ?
    → Pourra-t-on bientôt tout guérir grâce aux gènes 👩‍⚕️?
    → Comment nourrir le monde sans le détruire 🌍 ?
    → L’intelligence artificielle peut-elle devenir vraiment intelligente 🤖 ?
  4. #2
    God's Breath

    Re : Simplification arctan en arccos

    Bonjour,

    Citation Envoyé par -bonbon- Voir le message
    Expression à simplifier : arctan(racine((1-x)/(1+x))) en fonction de arccos.

    2 idées :
    -dériver et essayer de retomber sur une forme connue (par exemple la dérivée de arccos) pour par la suite intégrer et chercher la constante pour un certain x.
    Bon j'arrive à une expression que je n'arrive pas à primitiver!
    Quelle est l'expression que tu n'arrives pas à primitiver ?

    Citation Envoyé par -bonbon- Voir le message
    On me demande aussi de préciser sur quel intervalle je travaille, je crois que ça va dépendre de la méthode utilisée pour les calculs mais on a en tout cas x différent de -1
    Au mieux, tu peux travailler sur l'ensemble de définition de ; quel est-il ?
    Et Dieu, dans sa colère, pour punir les humains, envoya sur la Terre les mathématiciens.

  5. #3
    -bonbon-

    Re : Simplification arctan en arccos

    En dérivant j'arrive à -(1-x)^(-1/2) * (1+x)^(-1/2)
    = -(2)^(-1/2)

    Ainsi la primitive serait -(2)^(-1/2)*x et on ne retrouve pas de arccos!


    La fonction admet une bijection de -pi/2;pi/2 sur R.
    Notre fonction serait donc définie sur R- privé de -1 car le dénominateur ne doit pas s'annuler et racine est défini sur R+

  6. #4
    Thorin

    Re : Simplification arctan en arccos

    Je ne sais pas comment tu as dérivé, mais je doute fortement que ta fonction soit une fonction affine.
    École d'ingénieurs + M1 Physique Fondamentale

  7. A voir en vidéo sur Futura
  8. #5
    Thorin

    Re : Simplification arctan en arccos

    Ton domaine de définition est faux aussi, d'ailleurs.

    Après avoir tracé la fonction sur ma calculette et donc vu le résultat, je peux en tout cas te dire que la méthode de dériver marchera sans aucun doute, à condition de ne pas se perdre dans les calculs.
    École d'ingénieurs + M1 Physique Fondamentale

  9. #6
    -bonbon-

    Re : Simplification arctan en arccos

    Euh oui effectivement j'ai oublié de ragerder le signe du dénominateur. On travaille donc sur -1;1 ouverts.

    Je recalcule la dérivée pour voir où je me suis trompé!

  10. Publicité
  11. #7
    -bonbon-

    Re : Simplification arctan en arccos

    Alors j'ai recalculé la dérivée et j'arrive à un résultat dont je suis à peu près sur :

    f '(x) = -1 / (2*(x+1)*racine((-x+1)/x+1))

    Et la pour primitiver..

  12. #8
    God's Breath

    Re : Simplification arctan en arccos

    !!!
    Et Dieu, dans sa colère, pour punir les humains, envoya sur la Terre les mathématiciens.

  13. #9
    Thorin

    Re : Simplification arctan en arccos

    Sinon, une autre piste, moins calculatoire, mais où il faut faire attention aux "détails" d'ensembles de définitions et de signes, est de se rappeler que :

    avec
    École d'ingénieurs + M1 Physique Fondamentale

  14. #10
    -bonbon-

    Re : Simplification arctan en arccos

    J'avais pas vu (le dimanche matin et moi...), et là on retombe sur du connu merci beaucoup!!!

    On a donc f(x) = 1/2 * arccos(x) + c.

    La question que je me pose : est-il vraiment nécessaire de déterminer une constante?

    PS : oui l'autre méthode a l'air pas mal du tout, je vais la regarder aussi, merci!

  15. #11
    Thorin

    Re : Simplification arctan en arccos

    Oui, il est nécessaire de déterminer la constante, puisque deux fonctions ayant même dérivée sont égales à une constante près.
    Mais il suffit d'évaluer en 0, par exemple...
    École d'ingénieurs + M1 Physique Fondamentale

  16. #12
    -bonbon-

    Re : Simplification arctan en arccos

    Ok en 0 on a arctan(1) = pi/4
    et 1/2 * arccos(0) = pi/4.

    On a ainsi :
    arctan(racine((1-x)/(1+x))) = 1/2 * arccos(x) + pi/4

  17. Publicité
  18. #13
    Thorin

    Re : Simplification arctan en arccos

    J'ai un sérieux doute sur la conclusion que tu tires des deux premières égalités !!
    École d'ingénieurs + M1 Physique Fondamentale

  19. #14
    -bonbon-

    Re : Simplification arctan en arccos

    Je reprends on a :
    arctan(racine((1-x)/(1+x))) = 1/2 * arccos(x) + c
    Pour x = 0 :
    pi/4 = pi/4 + c
    d'où c=0

    -> arctan(racine((1-x)/(1+x))) = 1/2 * arccos(x) pour tout x appartenant à -1;1 ouverts

Discussions similaires

  1. Arcsin, arccos, arctan et dérivée.
    Par stross dans le forum Mathématiques du collège et du lycée
    Réponses: 21
    Dernier message: 20/01/2018, 09h29
  2. Derivee arctan et arccos
    Par remix13 dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 14/01/2008, 18h19
  3. Arctan et simplification
    Par M I L A S dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 10/10/2007, 10h28
  4. arccos
    Par exilim dans le forum Mathématiques du supérieur
    Réponses: 4
    Dernier message: 24/11/2006, 21h08
  5. Arccos(tanx) =...
    Par 范des数学 dans le forum Mathématiques du collège et du lycée
    Réponses: 1
    Dernier message: 30/09/2006, 12h45