Série de Fourier
Répondre à la discussion
Affichage des résultats 1 à 4 sur 4

Série de Fourier



  1. #1
    invite6ac3a3cf

    Série de Fourier


    ------

    Salut,

    Dans un livre de math, ils disent que quand une fonction est impaire :
    An = 0 pour tous 'n' appartenant à N .

    Si j'ai bien compris, ça veut dire qu'une fonction impaire n'a donc pas de composante continue ? Vu que n est un entier naturel.

    Merci d'éclairer ma lanterne.

    -----

  2. #2
    invite57a1e779

    Re : Série de Fourier

    Cela signifie seulement que la série de Fourier se réduit à

  3. #3
    inviteaf1870ed

    Re : Série de Fourier

    Et donc il n'y a bien aucune composante continue. Ce qui est assez logique, puisque la fonction est impaire.

  4. #4
    invite6ac3a3cf

    Re : Série de Fourier

    Oui mais ça me parait byzarre.... Surtout qu'on arrive à produire des signaux impaires avec une composante continue.
    En tout cas merci pour vos réponses.

  5. A voir en vidéo sur Futura

Discussions similaires

  1. serie de fourier
    Par invite36161963 dans le forum Mathématiques du supérieur
    Réponses: 7
    Dernier message: 25/10/2009, 17h58
  2. série de fourier
    Par invitea6b00bd7 dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 05/02/2009, 00h47
  3. Série de Fourier
    Par mehdi_128 dans le forum Mathématiques du supérieur
    Réponses: 16
    Dernier message: 01/01/2008, 22h39
  4. Série de Fourier
    Par Codi19 dans le forum Mathématiques du supérieur
    Réponses: 2
    Dernier message: 30/09/2007, 17h49
  5. Série de Fourier
    Par invite5d28f6eb dans le forum Mathématiques du supérieur
    Réponses: 7
    Dernier message: 03/04/2007, 03h04