Répondre à la discussion
Affichage des résultats 1 à 5 sur 5

pb d'énoncé



  1. #1
    kaiswalayla

    pb d'énoncé


    ------

    Bonjour,

    je ne comprends pas cet énoncé que m'a envoyé un ami, est ce normal ? Si oui quel sens pourrait on lui donner, quitte à le modifier?

    Une classe se compose de n élèves. On suppose que ces élèves sont issus
    d’une population susuffisamment importante pour que la probabilité qu’un
    élève soit de sexe masculin (ou de sexe féminin) soit égale `a 1/2.
    Soit l' événement :
    – A : la classe comporte au plus un garçon, calculer P(A)
    dans cet exemple le cardinal de l'univers est soit 2 puissance n ou n+1 !!!!
    comment faire ??


    Merci

    -----
    Ainsi du théorème: il perd sens et logique quand un mot fait défaut lui ôtant sa valeur

  2. Publicité
  3. #2
    invite986312212
    Invité

    Re : pb d'énoncé

    salut, je suppose que ce que tu appelles "univers" c'est l'ensemble des classes possibles (ce que j'appellerais plutôt "espace probabilisable" mais bon, les appellations...). Si tu considères que tu as des élèves nommés (ou numérotés) et que décrire ta classe revient à savoir qui est quoi (qui a quel sexe) alors il y a en effet 2^n classes. Si tu ne t'intéresses qu'au nombre de filles, il y a n+1 classes distinctes, c'est toi qui vois. De toutes façons ça ne change pas grand-chose au calcul de la proba.

  4. #3
    kaiswalayla

    Re : pb d'énoncé

    C'est sympa, merci pour la réponse:

    si j'ai bien compris l'univers contiendrait soit éléments dans le 1er cas
    ou soit 0 garçon soit 1 garçon, soit 2 garçon,..., soit n garçon, ce qui fait (n+1) types de classes dans le 2ème cas.
    Donc la proba d'avoir au plus un garçon serait dans le 1èr cas,

    soit dans le 2ème.

    es tu d'accord ?
    Ainsi du théorème: il perd sens et logique quand un mot fait défaut lui ôtant sa valeur

  5. #4
    invite986312212
    Invité

    Re : pb d'énoncé

    non je ne suis pas d'accord. Tu peux représenter ton problème des deux façons, mais la loi de probabilité ne va pas être uniforme dans le second cas. Tu es d'ailleurs censé trouver la même proba.

  6. A voir en vidéo sur Futura
  7. #5
    kaiswalayla

    Re : pb d'énoncé

    1ère façon:

    éléments , où est la classe numéro j parmi les classes contenant k garçons. Et il y a équiprobabilité.

    2ème façon:

    éléments et il n' y a pas équiprobabilité. Par exemple:

    proba du 1er élément de : ;

    proba du 2ème élément de , contenant toutes les classes à un garçon :


    Ai-je enfin compris ?
    Ainsi du théorème: il perd sens et logique quand un mot fait défaut lui ôtant sa valeur

Discussions similaires

  1. Confusion d'énoncé
    Par Christopher Tracey dans le forum Mathématiques du collège et du lycée
    Réponses: 6
    Dernier message: 11/12/2008, 16h43
  2. Probleme d'énoncé...
    Par sister dans le forum Mathématiques du collège et du lycée
    Réponses: 2
    Dernier message: 09/10/2007, 10h06
  3. Soucis d'énoncé
    Par mimine739 dans le forum Mathématiques du supérieur
    Réponses: 3
    Dernier message: 10/09/2007, 13h24
  4. pb d'énoncé en nb complexe
    Par charlottenord dans le forum Mathématiques du collège et du lycée
    Réponses: 1
    Dernier message: 27/09/2006, 21h30
  5. Doute d'énoncé
    Par Geo frais dans le forum Chimie
    Réponses: 2
    Dernier message: 12/10/2005, 10h21